

Design Example Report

Title	Low Profile, Low Standby Consumption 27 W Power Supply Using TNY380PN				
Specification	90 VAC – 265 VAC Input; 5 V, 2.5 A and 14.5 V, 1 A Outputs				
Application	LCD Monitor				
Author	Applications Engineering Department				
Document Number	DER-229				
Date	August 17, 2009				
Revision	1.0				

Summary and Features

- Low cost, low parts count solution
 - TinySwitch[®]-PK TNY380PN-based solution
 - No heatsink required
- Highly energy efficient
 - Very low standby consumption
 - Input power of 82 mW with 30 mW output load, 264 VAC input
 - Input power <100 mW at no-load, 230 VAC input
 - High full-load efficiency
 - >80% efficiency at 90 VAC
- Temperature rise meets requirements of LCD monitors
- TNY380PN plastic <78°C (90 VAC, 60 Hz, 25°C ambient)
- Conducted EMI margin >8 dB

PATENT INFORMATION

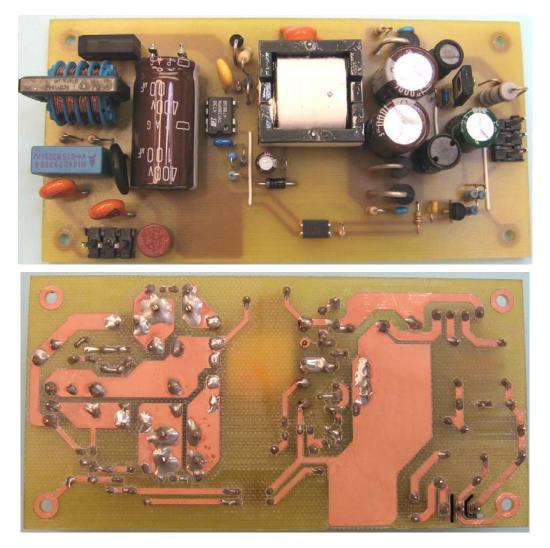
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1		oduction	
2	Pow	er Supply Specification	5
3	Sch	ematic	6
4	Circ	uit Description	7
	4.1	Input EMI Filtering and Rectification	7
	4.2	TinySwitch-PK Primary	7
	4.3	Output Rectification	8
	4.4	Output Feedback	8
	4.5	Output Overvoltage Shutdown	8
	4.6	TNY380 BP Pin Supply with Bias Winding	9
5	PCE	3 Layout	10
6	Bill	of Materials	11
7	Trar	nsformer Specification	12
	7.1	Electrical Diagram	12
	7.2	Electrical Specifications	12
	7.3	Materials	
	7.4	Transformer Build Diagram	13
	7.5	Transformer Construction	
8	Trar	nsformer Design Spreadsheet	15
9		ormance Data	
	9.1	Full Load Efficiency	19
	9.2	Input Power with 25 mW, 30 mW, and 44 mW Load at 5.1 V Output	20
	9.3	No-load Input Power	21
	9.4	Input Power vs. Available Output Power at 230 VAC	22
	9.5	Regulation	
	9.5.	1 Load	23
	9.5.	2 Line	25
	9.5.3	3 Cross Regulation	26
10) TI	nermal Performance	27
11	I W	aveforms	28
	11.1	Drain Voltage and Current, Normal Operation	28
	11.2	Output Voltage Start-up Profile	
	11.3	Drain Voltage and Current Start-up Profile	29
	11.4	Load Transient Response (75% to 100% Load Step)	29
	11.5	Output Overvoltage Protection	
	11.6	Output Ripple Measurements	32
	11.6	6.1 Ripple Measurement Technique	32
	11.6	6.2 Measurement Results	33
12	2 A	udible Noise	34
	12.1	Measurement Set-up	34
	12.2	Measurement	
13	3 C	onducted EMI	37
14	1 R	evision History	38

Important Note:


Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a two-output (5 V, 2.5 A, and 14.5 V, 1 A) power supply utilizing a TNY380PN from the TinySwitch-PK family of ICs.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency No-load Input Power (264 VAC)	V _{IN} f _{LINE}	90 47	50/60 110	265 64 <0.2	VAC Hz W	3 Wire – with P.E.
Output Output Voltage 1 Output Ripple Voltage 1	V _{out1} V _{ripple1}		5	50	V mV	
Output Current 1 Output Voltage 2	I _{out1} V _{out2}	0	14.5	2.5	A V	
Output Ripple Voltage 2 Output Current 2 Total Output Power	V _{ripple2} I _{out2}	0		200 1	mV A	20 MHz bandwidth
Continuous Output Power	Pout			27	W	
Efficiency Full Load (90VAC) Required Average Efficiency at	η	80 N/A			% %	Measured at P _{OUT} 25°C Per California Energy Commission
25, 50, 75, and 100 % of P _{OUT}	η _{cec}	IN/A			70	(CEC) / Energy Star requirements
Environmental Conducted EMI Safety			ts CISPR2 ned to mee Cla			Output return connected to PE (chassis)
Ambient Temperature	T _{AMB}	0		40	°C	Free convection, sea level

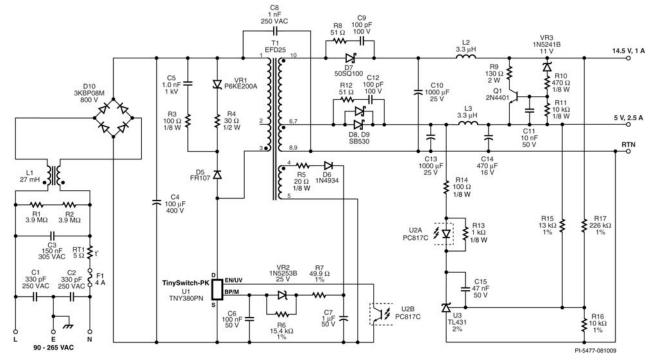


Figure 2 – Schematic.

4 Circuit Description

The power supply employs a TinySwitch-PK TNY380PN device (U1) with an integrated high-voltage MOSFET and a controller in a flyback configuration.

4.1 Input EMI Filtering and Rectification

Capacitors C1, C2, and C3, together with common-mode choke L1, form an RC filter that attenuates both common-mode and differential-mode conducted EMI. Diode Bridge D10 rectifies the AC input. For safety consideration, resistors R1 and R2 must be used to discharge the capacitor C3 when the AC input is disconnected.

4.2 TinySwitch-PK Primary

The TNY380PN device (U1) integrates an oscillator, a switch controller, startup and protection circuitry, and a power MOSFET, all on one monolithic IC. One side of the power transformer (T1) primary winding is connected to the positive side of the bulk capacitor C4, and the other side is connected to the DRAIN pin of U1. At the start of a switching cycle, the controller turns on the MOSFET and current ramps up in the primary winding, which stores energy in the core of the transformer. When that current reaches the limit threshold, the controller turns off the MOSFET. Due to phasing of the transformer windings and the output diode orientation, the stored energy then induces a voltage across the secondary winding, which forward biases the output diode, and the stored energy is delivered to the output capacitor. When the MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of that spike is limited by an RCDZ clamp network that consists of D5, R3, R4, C5, and VR1. In this arrangement, VR1 limits the voltage across R3 and C5 and also prevents the voltage across C5 from discharging completely during light load operation, thereby reducing losses and improving efficiency.

Using ON/OFF control, U1 skips switching cycles to regulate the output voltage, based on feedback to its EN/UV pin. Prior to each switching cycle, the EN/UV pin current is sampled to determine if that switching cycle should be enabled or disabled. If the EN/UV pin current is <115 μ A, the next switching cycle begins; the cycle is terminated when the current through the MOSFET reaches the internal current limit threshold or the DC_{MAX} signal is encountered. A state-machine within the controller adjusts the MOSFET current limit threshold, depending on the load being demanded from the supply. As the load on the supply drops, the current limit threshold is reduced. This ensures that the effective switching frequency stays above the audible range until the transformer flux density is low.

The TinySwitch-PK also has a peak power mode, at which it can supply additional output power to the load for short periods of time. If the MOSFET switching occurs for 14 consecutive clock cycles (132 kHz), the I_{LIMIT} increases and the MOSFET is enabled to switch at 264 kHz. While in peak power mode, if the MOSFET is disabled (via the feedback loop) for 12 consecutive clock cycles (264 kHz), then the TinySwitch-PK reverts back to its normal operating mode at 132 kHz. In this design, U1 is working at peak

power mode most of the time with pulse skipping, so that the effective switching frequency with pulse skipping can still be sufficiently high to minimize the audible noise frequency components.

Audible noise is eliminated by packing the transformer gap with gap filler, gluing the core junction, and heating the transformer before dip varnishing.

The BP pin is also used for programmable current limit setting. With capacitor C6 of 0.1 μ F connected at the BP pin, the TNY380PN is working at standard current limit mode.

4.3 Output Rectification

Diodes D8 and D9 rectify the 5 V secondary winding output of T1. Output voltage is filtered by C13, L3, and C14. Resistor R12 and capacitor C12 absorb the noise caused by the commutation of D8 and D9. Diode D7 rectifies the 14.5 V secondary winding output of T1. Output voltage is filtered by C10 and L2. Resistor R8 and capacitor C9 absorb the noise caused by the commutation of D7.

4.4 Output Feedback

The supply's output voltage regulation is set by voltage dividers formed by R15, R17, and R16, and the shunt regulator U3. When the output voltages rise above the set points, the LED in U2 becomes forward biased. On the primary side, the photo-transistor of U2 turns on and draws current out of the EN/UV pin of U1. Just before the start of each switching cycle, the controller checks the EN/UV pin current to determine whether the switching cycle should be enabled and disabled so that the output voltages are kept very close to the regulation set points.

To improve output cross regulation an active bleeder circuit was used. This is formed by R9, R10, R11, Q1, C11, and VR3. As the 14.5 V output rises, transistor Q1 is biased, which then feeds current from the 14.5 V output to the 5.1 V output. This limits the maximum voltage difference between 5.1 V and 14.5 V outputs.

4.5 Output Overvoltage Shutdown

The TinySwitch-PK family of ICs can detect overvoltage on the supply output and latch off. This protects the load in an open feedback loop fault condition, such as the failure of the optocoupler. Overvoltage on the output is detected through the BP/M pin and the bias winding on the transformer. The bias winding voltage is determined by the reflection of the output voltage through the turns ratio of the transformer. Therefore, an overvoltage on the output will be reflected onto the bias winding. The overvoltage threshold is the sum of the breakdown voltage of Zener diode VR2 and the BP/M pin voltage (25 V + 5.8 V). If the output voltage becomes abnormally high, the voltage on the bias winding will exceed the threshold voltage and excess current will flow into the BP/M pin. The latching shutdown feature is activated when current into the BP/M pin exceeds 7 mA.

4.6 TNY380 BP Pin Supply with Bias Winding

Besides overvoltage protection, the bias winding also supplies the IC consumption of U1 via the BP pin. Ultra-low no-load or very light load consumption was achieved by selecting the minimum number of bias winding turns to provide a bias voltage of 8 V at zero load and adjusting the value of resistors R6 and R7 to provide a current into the BP equal to or just above the IC consumption.

5 PCB Layout

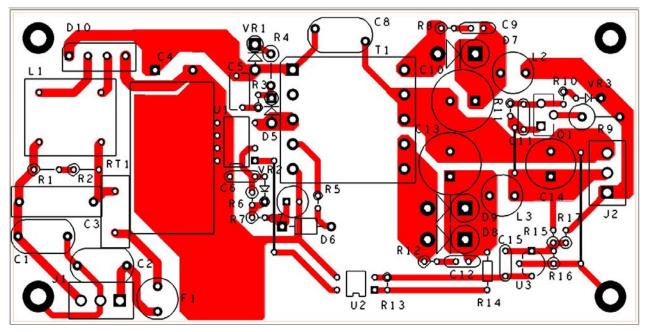


Figure 3 – PCB Layout (5 x 2.5 inches / 127 x 63.5 mm).

6 Bill of Materials

lte m	Qty	Ref Des	Description	Mfg Part Number	Manufacturer
1	2	C1 C2	330 pF, 250 VAC, Film, X1Y1	CD70-B2GA221KYAS	TDK
2	1	C3	150 nF, 305 VAC, X2	B32922A2154M	Epcos
3	1	C4	100 μF, 400 V, Electrolytic, Low ESR (16 x 30)	EPAG401ELL101ML30S	Nippon Chemi-Con
4	1	C5	0.001 μF, 1 kV, Disc Ceramic	562R10TSD10	Vishay
5	1	C6	100 nF, 50 V, Ceramic, X7R	RPER71H104K2K1A03B	Murata
6	1	C7	1 μF, 50 V, Electrolytic, Gen. Purpose (5 x 11)	EKMG500ELL1R0ME11D	Nippon Chemi-Con
7	1	C8	1 nF, Ceramic, Y1	440LD10-R	Vishay
8	2	C9 C12	100 pF, 100 V, Ceramic, COG	B37979N1101J000	Epcos
9	2	C10 C13	1000 μ F, 25 V, Electrolytic, Very Low ESR, 21 m Ω (12.5 x 20)	EKZE250ELL102MK20S	Nippon Chemi-Con
10	1	C11	10 nF, 50 V, Ceramic, COG	B37986G5103J054	Epcos
11	1	C14	470 $\mu\text{F},$ 16 V, Electrolytic, Very Low ESR, 53 m Ω (10 x 12.5)	EKZE160ELL471MJC5S	Nippon Chemi-Con
12	1	C15	47 nF, 50 V, Ceramic, X7R	B37981F5473K000	Epcos
13	1	D5	1000 V, 1 A, Fast Recovery Diode, DO-41	FR107-T-F	Diodes Inc.
14	1	D6	100 V, 1 A, Fast Recovery, 200 ns, DO-41	1N4934	Vishay
15	1	D7	100 V, 5 A, Schottky, DO-201AR	VS-50SQ100	Vishay
16	2	D8 D9	30 V, 5 A, Schottky, DO-201AD	SB530	Vishay
17	1	D10	800 V, 3 A, Bridge Rectifier, Glass Passivated	3KBP08M-E4/51	Vishay
18	1	F1	4 A, 250V, Slow, TR5	3721400041	Wickman
19	2	J1 J2	3 Position (1 x 3) Header, 0.156 Pitch, Vertical	26-48-1031	Molex
20	1	L1	27 mH, 0.9 A, Common Mode Choke	B82732-R2901-B30	Epcos
21	1	L2	3.3 μH, 5.7 A	ELC08D3R3E	Panasonic
22	1	L3	3.3 μH, 5.5 A	RL622-3R3K-RC	JW Miller
23	4	MTG_ HOLE	Mounting Hole No. 4		
24	1	Q1	NPN, Small Signal BJT, 40 V, 0.6 A, TO-92	2N4401	Vishay
25	2	R1 R2	3.9 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-3M9	Yageo
26	2	R3 R14	100 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-100R	Yageo
27	1	R4	30 Ω, 5%, 1/2 W, Carbon Film	CFR-50JB-30R	Yageo
28	1	R5	20 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-20R	Yageo
29	1	R6	15.4 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-15K4	Yageo
30	1	R7	49.9 Ω, 1%, 1/4 W, Metal Film	MFR-25FBF-49R9	Yageo
31	2	R8 R12	51 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-51R	Yageo
32	1	R9	130 Ω, 5%, 2 W, Metal Oxide	RSF200JB-130R	Yageo
33	1	R10	470 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-470R	Yageo
34	1	R11	10 kΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-10K	Yageo
35	1	R13	1 kΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-1K0	Yageo
36	1	R15	13 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-13K0	Yageo
37	1	R16	10 kΩ, 1%, 1/4 W, Metal Film	ERO-S2PHF1002	Panasonic
38	1	R17	226 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-226K	Yageo
39	1	RT1	NTC Thermistor, 5 Ω, 2.8 A	CL160	Thermometrics
40	1	T1	Bobbin, EFD25, Horizontal, 10 Pins	B66422-B1010-D1	Epcos
41	1	U1	TinySwitch-PK, TNY380PN, DIP-8C	TNY380PN	Power Integrations
42	1	U2	Optocoupler, 35 V, CTR 200-300%, 4-DIP	PC817C	Sharp
43	1	U3	2.495 V Shunt Regulator IC, 2%, 0 to 70 °C, TO-92	TL431CLPG	On Semiconductor
44	1	VR1	200 V, 5 W, 5%, TVS, DO204AC (DO-15)	P6KE200ARLG	On Semiconductor
45	1	VR2	25 V, 5%, 500 mW, DO-35	1N5253B	Microsemi
46	1	VR3	11 V, 5%, 500 mW, DO-35	1N5241B	Microsemi

7 Transformer Specification

7.1 Electrical Diagram

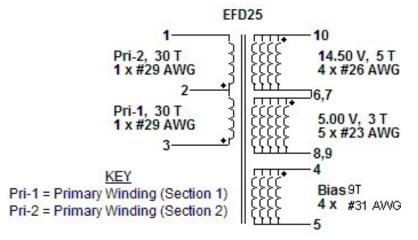
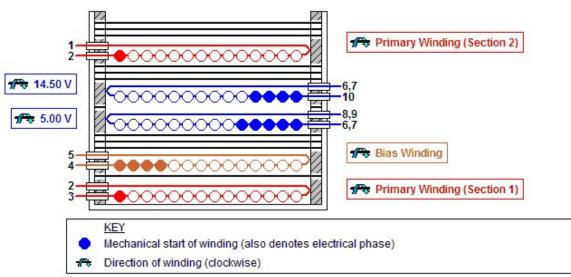
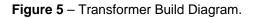


Figure 4 – Transformer Electrical Diagram.


7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-5 to pins 6-10	3000 VAC
Primary Inductance	Pins 1-3, all other windings open, measured at 100 kHz, 0.4 VRMS	518 μH, ±5%
Resonant Frequency	Pins 1-3, all other windings open	400 kHz (Min.)
Primary Leakage Inductance	Pins 1-3, with pins 6, 7, 8, 9, and 10 shorted, measured at 100 kHz, 0.4 VRMS	20 μH (Max.)


7.3 Materials

Item	Description
[1]	Core: EFD25, NC-2H (Nicera) or equivalent, gapped for ALG of 144 nH/t ²
[2]	Bobbin 5+5 pins: Epcos part number B66422-B1010-D1
[3]	Tape: Polyester web 3.00 mm wide
[4]	Barrier tape: Polyester film (1 mil base thickness), 16.40 mm wide
[5]	Teflon tubing #22
[6]	Varnish
[7]	Magnet wire: #29 AWG, solderable double coated
[8]	Magnet wire: #31 AWG, solderable double coated
[9]	Magnet wire: #23 AWG, solderable double coated
[10]	Magnet wire: #26 AWG, solderable double coated
[11]	CHOMERICS T644 compound form-in-place gap filler
[12]	LOCTITE 409 glue

7.4 Transformer Build Diagram

7.5 Transformer Construction

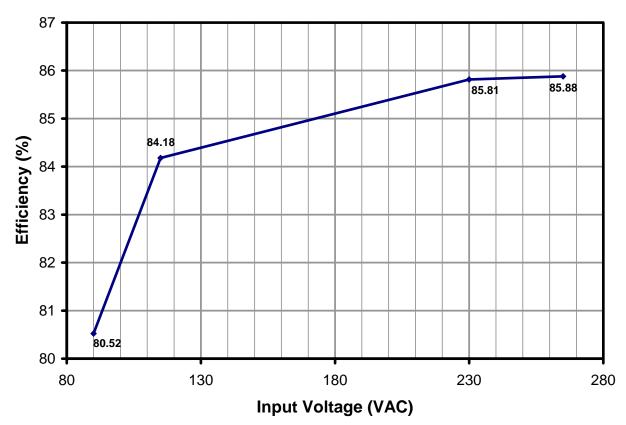
1				
WD1 First Half of Primary	Use 3.00 mm margin (Item [3]) on the left side. Use 3.00 mm margin (Item [3]) on the right side. Start on pin 3 using Item [5] at the start leads and wind 30 turns (x 1 filar) of Item [7] in one layer from left to right. Spread the winding evenly across the entire bobbin. Finish this winding on pin 2 using Item [5] at the finish lead.			
Basic Insulation	Add one layer of tape (Item [4]) for insulation.			
WD2 Bias Winding	Use 3.00 mm margin (Item [3]) on the left side. Use 3.00 mm margin (Item [3]) on the right side. Start on pin 4 using Item [5] at the start leads and wind nine turns (x 4 filar) of Item [8]. Wind in the same rotational direction as the primary winding. Spread the winding evenly across the entire bobbin. Finish this winding on pin 5 using Item [5] at the finish leads.			
Reinforced Insulation	Use three layers of tape (Item [4]) for insulation.			
WD3 Secondary Winding 5 V	Use 3.00 mm margin (Item [3]) on the left side. Use 3.00 mm margin (Item [3]) on the right side. Start on pins 6 and 7 using Item [5] at the start leads and wind three turns (x 5 filar) of Item [9]. Spread the winding evenly across the entire bobbin. Wind in the same rotational direction as the primary winding. Finish this winding temporarily on pin 1. After WD4 Secondary Winding 14.5 V is finished, bring the wire back and finish at pins 8 and 9 using Item [5] at the finish leads.			
WD4 Secondary Winding 14.5 V	Use 3.00 mm margin (Item [3]) on the left side. Use 3.00 mm margin (Item [3]) on the right side. Start on pin 10 using Item [5] at the start leads and wind five turns (x 4 filar) of Item [10]. Spread the winding evenly across the entire bobbin. Wind in the same rotational direction as the primary winding. Finish this winding on pins 6 and 7 using Item [5] at the finish leads.			
Reinforced Insulation	Use three layers of tape (Item [4]) for reinforced insulation.			
WD6 Second Half of Primary	Use 3.00 mm margin (Item [3]) on the left side. Use 3.00 mm margin (Item [3]) on the right side. Start on pin 2 using Item [5] at the start leads and wind 30 turns (x 1 filar) of Item [7] in one layer from left to right. On the final layer, spread the winding evenly across the entire bobbin. Finish this winding on pin 1 using Item [5] at the finish leads.			
Outer Wrap	Wrap the windings with three layers of tape (Item [4]).			
Core Preparation	Prepare the core to get the correct primary inductance.			
Final Assembly	Apply Item [11] to fill the center gap area. Assemble and secure the core halves with tape and apply Item [12] at the sides of junctions of the core halves.			
Varnishing	Heat the transformer to 100°C in oven for 30 minutes. Dip varnish the transformer in Item [6].			

8 Transformer Design Spreadsheet

ACDC_ TinySwitch-PK_ 032608; Rev.1.5; © 2008 Power Integrations	INPUT	INFO	OUTPUT	UNIT	ACDC_TinySwitch-PK_032608_ Rev1-5.xls; TinySwitch-PK Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICAT					Customer
VACMIN	90			V	Minimum AC input voltage
VACMAX	265			V	Maximum AC input voltage
fL	60			Hz	AC mains frequency
VO	5.00			V	Output voltage (at continuous power)
Peak Load Current, IO	6.57			A	Power supply output current (corresponding to peak power)
Peak Power		Warning	32.85	W	!!! Warning. Output power exceeds maximum capability of the chosen device in the chosen configuration. Choose larger device or higher current limit.
Continuous / Average Power	27		27	W	Continuous/average output power. Used in estimation of core size.
n	0.80				Efficiency estimate at output terminals. Use 0.7 if no better data available.
Z	0.50		0.5		Z factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.6 if no better data available.
tC	3.00			ms	Bridge rectifier conduction time estimate
CIN	100.00		100	μF	Input capacitance
ENTER TinySwitch	-PK VARIABLES				
TinySwitch-PK	TNY380		TNY380		User defined TinySwitch-PK
Chosen Device		TNY380			
Chose Configuration	STD		Standard Current Limit		Choose "RED" for reduced current limit (sealed adapters), "STD" for standard current limit, or "INC" for increased current limit (peak or higher power applications)
ILIMITMIN			0.907	А	Minimum current limit
ILIMITTYP			0.975	А	Typical current limit
ILIMITMAX			1.043	А	Maximum current limit
fSmin			248000	Hz	Minimum device switching frequency
I^2fmin			225.87	A ² kHz	Minimum I ² f (current limit squared and frequency trimmed for tighter tolerance)
PO_132kHz			26.26	W	Estimated maximum power while still in 132 kHz operation
VOR	110.00		110	V	Reflected output voltage (VOR < 135 V recommended)
VDS			10	V	TinySwitch-PK on-state drain-to-source voltage
VD			0.5	V	Output winding diode forward voltage drop
KP			0.42		Ripple to peak current ratio (KP < 6)
KP_TRANSIENT			0.25		Transient ripple to peak current ratio; ensure KP_TRANSIENT > 0.25
ENTER BIAS WIND	DING VARIABLES		1		
VB			17.00	V	Bias winding voltage
VDB			0.70	V	Bias winding diode forward voltage drop
NB			9.27		Bias winding number of turns
R_BIAS			7.15	kΩ	Bias winding resistor to externally power TinySwitch-PK
VZOV			23.00	V	Overvoltage protection Zener diode
UVLO VARIABLES V_UV_TARGET			119.59	V	Target undervoltage threshold, above which the power supply will start

ACDC_ TinySwitch-PK_ 032608; Rev.1.5; © 2008 Power Integrations	INPUT	INFO	OUTPUT	UNIT	ACDC_TinySwitch-PK_032608_ Rev1-5.xls; TinySwitch-PK Continuous/Discontinuous Flyback Transformer Design Spreadsheet
V_UV_ACTUAL			118.20	V	Typical start-up voltage based on standard value of RUV ACTUAL
RUV_IDEAL			4.70	MΩ	Calculated value for UV Lockout resistor
RUV_ACTUAL			4.64	MΩ	Closest standard value of resistor to RUV_IDEAL
ENTER TRANSFOR	MER CORE/CO	NSTRUCTION	I VARIABLES		
Core Type	EFD25		EFD25		User-defined core size (verify thermal performance under continuous/average load conditions)
Core		EFD25		P/N:	EFD25-3F3
Bobbin		EFD25_ BOBBIN		P/N:	EFD25_BOBBIN
AE			0.58	cm ²	Core effective cross-sectional area
LE			5.7	cm	Core effective path length
AL			1800	nH/T ²	Ungapped core effective inductance
BW			16.4	mm	Bobbin physical winding width
М	3.00		3	mm	Safety margin width (half the primary-to- secondary creepage distance)
L	2.00		2		Number of primary layers
NS	3		3		Number of secondary turns
DC INPUT VOLTAGI	E PARAMETER	S			
VMIN			109	V	Minimum DC input voltage
VMAX			375	V	Maximum DC input voltage
CURRENT WAVEFO	RM SHAPE PA	RAMETERS		-	
DMAX			0.53		Duty ratio at full load, minimum primary inductance and minimum input voltage
IAVG			0.42	А	Average primary current
IP			0.91	А	Minimum peak primary current
IR			0.38	А	Primary ripple current
IRMS			0.61	A	Primary RMS current
TRANSFORMER PR	IMARY DESIG	N PARAMETE	RS		
LP			518	μH	Typical primary inductance. $\pm 5\%$ to ensure a minimum primary inductance of 493 μ H
LP_TOLERANCE	5.00		5	%	Primary inductance tolerance
NP			60		Primary winding number of turns
ALG BM			<u>144</u> 1854	nH/T ² Gauss	Gapped core effective inductance Maximum operating flux density at maximum primary inductance and maximum current limit; BM<3100 is
BAC			389	Gauss	AC flux density for core loss curves (0.5 ×
		┥ ┥	1100		peak-to-peak) Relative permeability of ungapped core
ur LG		┨ ┨	<u>1408</u> 0.47		Gap length (Lg > 0.1 mm)
BWE		┨ ┨	20.8	mm	Effective bobbin width
OD			0.35	mm mm	Maximum primary wire diameter including insulation
INS			0.06	mm	Estimated total insulation thickness (= 2 * film thickness)
DIA		1 1	0.29	mm	Bare conductor diameter
AWG			29	AWG	Primary wire gauge (rounded to next smaller standard AWG value)
СМ			128	Cmils	Bare conductor effective area in circular mils
CMA_PEAK			211	Cmils	Primary winding current capacity under peak load condition (200 < CMA < 500)
СМА			249	Cmils/A	Primary winding current capacity (200 < CMA < 500)

ACDC_ TinySwitch-PK_ 032608; Rev.1.5; © 2008 Power Integrations	INPUT	INFO	OUTPUT	UNIT	ACDC_TinySwitch-PK_032608_ Rev1-5.xls; TinySwitch-PK Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ISP			18.14	А	Peak secondary current
ISRMS			11.47	А	Secondary RMS current
IRIPPLE			9.40	А	Output capacitor RMS ripple current
CMS			2294	Cmils	Secondary bare conductor minimum circular mils
AWGS			16	AWG	Secondary wire gauge (rounded up to next larger standard AWG value)
VOLTAGE STRESS	PARAMETERS				
VDRAIN			626	V	Maximum drain voltage estimate (assumes 20% Zener clamp tolerance and an additional 10% temperature tolerance)
PIVS			24	V	Output rectifier maximum peak inverse voltage
TRANSFORMER SI	ECONDARY DES	SIGN PARAM	ETERS (MULTIPL	E OUTPUTS)	
First Output			-		
VO1	5.00		5	V	Main output voltage (if unused, defaults to single output design)
IO1	2.50		2.500	A	Output DC current (enter peak value)
PO1		ł	12.50	W	Output power
VD1			0.5	V	Output diode forward voltage drop
NS1			3.00	^	Output winding number of turns
ISRMS1			4.364	A	Output winding RMS current
IRIPPLE1 PIVS1			3.58	A V	Output capacitor RMS ripple current
PIVST			24	V	Output rectifier maximum peak inverse voltage
Recommended Diodes			SB530		Recommended diodes for this output
CMS1			873	Cmils	Output winding bare conductor minimum circular mils
AWGS1			20	AWG	Wire gauge (rounded up to next larger standard AWG value)
DIAS1			0.81	mm	Minimum bare conductor diameter
ODS1			3.47	mm	Maximum outside diameter for triple- insulated wire
Second Output					-
VO2	14.50			V	Output voltage
102	1.00			A	Output DC current (enter peak value)
PO2			14.50	W	Output power
VD2			0.7	V	Output diode forward voltage drop
NS2			8.29	^	Output winding number of turns
ISRMS2 IRIPPLE2			1.745 1.43	A	Output winding RMS current Output capacitor RMS ripple current
PIVS2			66	A V	Output capacitor KNS hpple current Output rectifier maximum peak inverse voltage
Recommended Diode			SB380		Recommended diodes for this output
CMS2			349	Cmils	Output winding bare conductor minimum circular mils
AWGS2			24	AWG	Wire gauge (rounded up to next larger standard AWG value)
DIAS2			0.51	mm	Minimum bare conductor diameter
ODS2			1.25	mm	Maximum outside diameter for triple- insulated wire
Total Power		Warning	27	W	Total power does not match calculated PO at top of sheet
Negative Output			N/A		If negative output exists, enter output number (e.g., if VO2 is negative output, enter 2)


NOTE:

The transformer was designed to deliver a peak power of 35 W, higher than the 27 W specification. This artificially increased the primary inductance value so that under peak load conditions the effective switching frequency was reduced (increased pulse skipping). This also resulted in a warning in the spreadsheet, as the output power is higher than recommended for a current limit selection of 'standard,' but can be ignored as the actual output power is within the recommended range.

9 Performance Data

All measurements performed at room temperature. Unless otherwise specified, all testing performed with a line frequency of 50 Hz except for 115 VAC where 60 Hz was used.

9.1 Full Load Efficiency

Figure 6 – Efficiency vs. Input Voltage, 60 Hz, Full Load, Room Temperature.

9.2 Input Power with 25 mW, 30 mW, and 44 mW Load at 5.1 V Output

14.5 V output unloaded

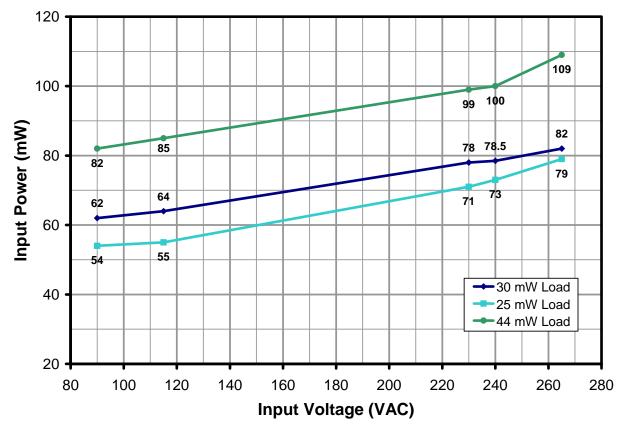
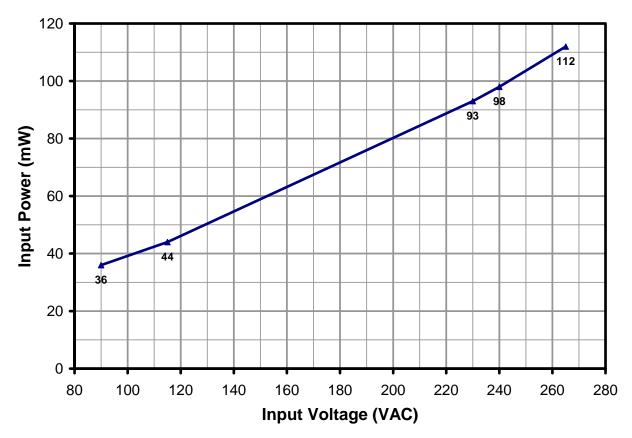
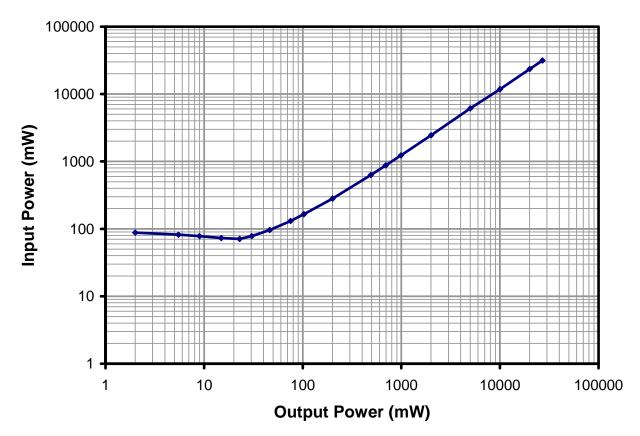



Figure 7 – Input Power with 25 mW, 30 mW, and 44 mW Load at 5 V Output vs. Line Voltage.



9.3 No-load Input Power

Figure 8 – No-load Input Power vs. Line Voltage.

The value of the no-load input power can be further reduced by optimizing the value of R6; the value as presented was optimized to give the lowest input power during standby operation when a small output load is present.

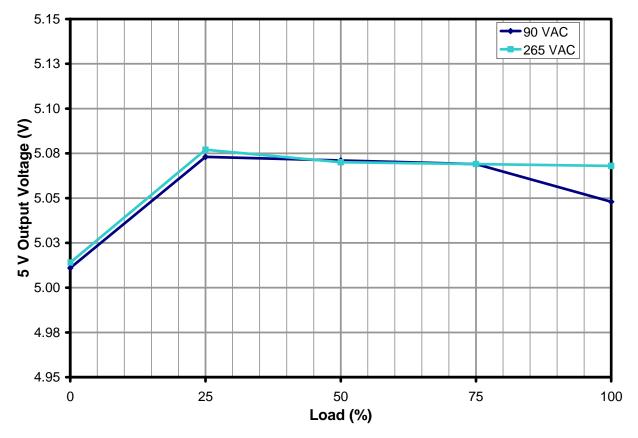

9.4 Input Power vs. Available Output Power at 230 VAC

Figure 9 – Input Power vs. Available Output Power Measured at 230 VAC.

9.5 Regulation

9.5.1 Load

Figure 10 – 5 V Output Load Regulation, Room Temperature.

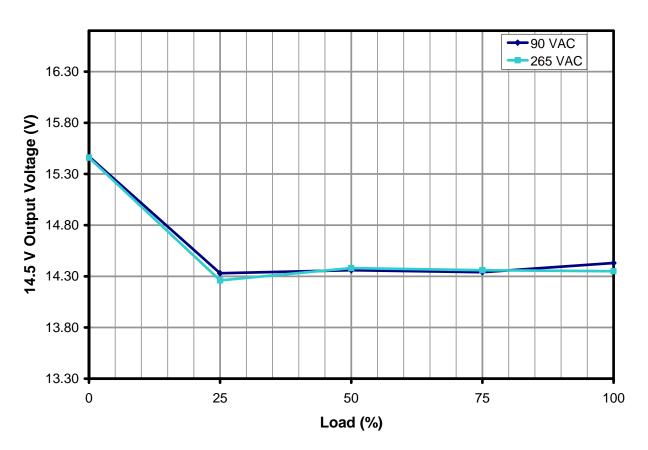


Figure 11 – 14.5 V Output Load Regulation, Room Temperature.

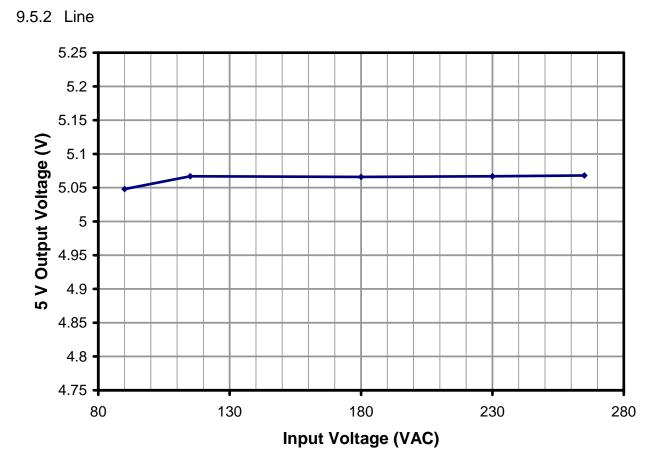


Figure 12 – 5 V Output Line Regulation, Room Temperature, Full Load.

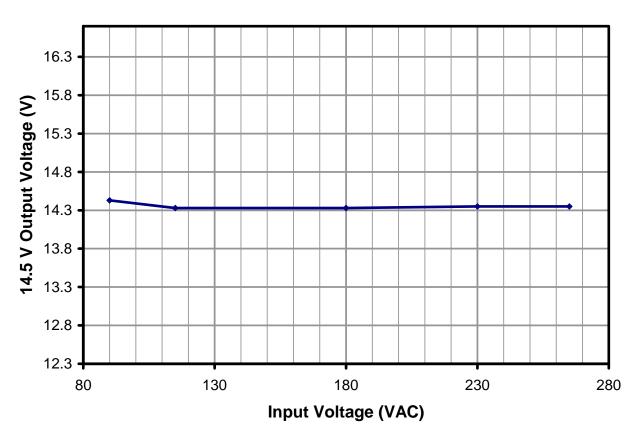
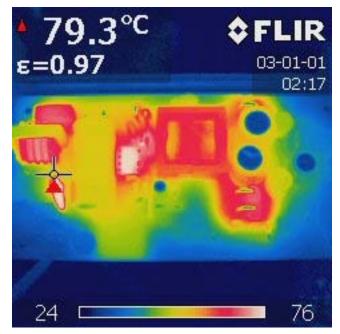


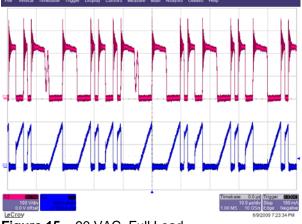
Figure 13 – 14.5 V Output Line Regulation, Room Temperature, Full Load.

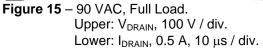

	90 \	VAC	265 VAC		
	5 V OUT (V)	14.5 V OUT (V)	5 V OUT (V)	14.5 V OUT (V)	
14.5 V / 1 A, 5 V / 2.5 A	5.05	14.43	5.07	14.35	
14.5 V / 0 A, 5 V / 0 A	5.01	15.47	5.01	15.46	
14.5 V / 0.1 A, 5 V / 2.5 A	5.02	15.10	5.01	15.44	
14.5 V / 1 A, 5 V / 0.1 A	5.11	13.75	5.11	13.73	

10 Thermal Performance

The unit ran for two hours at an output load of 27 W to warm-up prior to measurements being taken.

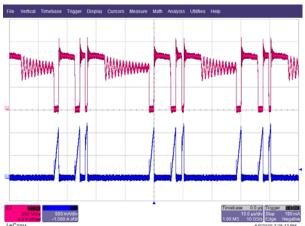
ltem	Temperature (°C)	
nem	90 VAC / 60 Hz	
Ambient	25	
Common-Mode Choke(L1)	63	
Bridge (D10)	67	
Transformer (T1) Core	55	
Transformer (T1) Winding	58	
PI Device (U1)	77	
Rectifier for 5 V (D8)	63	
Rectifier for 14.5 V (D7)	58	
Thermistor (RT1)	79	

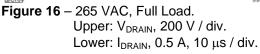



Figure 14 – Infrared Image of the Components Side After Two Hours Operation at Full Load, 90 VAC 60 Hz and Room Temperature Open Frame.

11 Waveforms

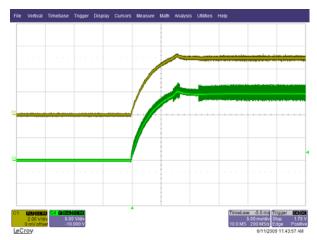
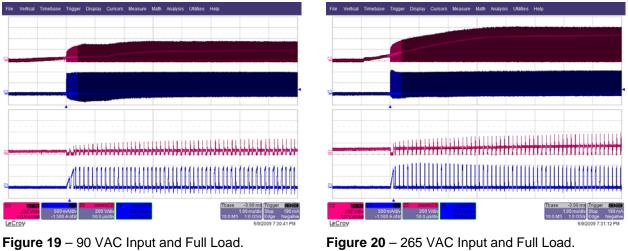
11.1 Drain Voltage and Current, Normal Operation

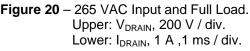




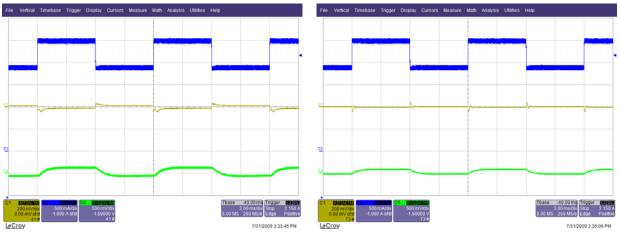
11.2 Output Voltage Start-up Profile

Figure 17 – Start-up Profile, 90 VAC. Upper: $V_{5 V}$, 2 V / div. Lower: $V_{14.5 V}$, 5 V, 5 ms / div.


Figure 18 – Start-up Profile, 265 VAC. Upper: $V_{5 V}$, 2 V / div. Lower: $V_{14.5 V}$, 5 V, 5 ms / div.

11.3 Drain Voltage and Current Start-up Profile



Upper: V_{DRAIN} , 200 V / div. Lower: I_{DRAIN} , 0.5 A ,1 ms / div.

11.4 Load Transient Response (75% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

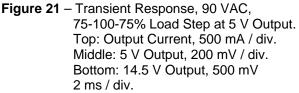
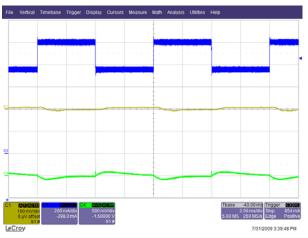



Figure 22 – Transient Response, 265 VAC, 75-100-75% Load Step at 5 V Output. Top: Output Current, 500 mA / div. Middle: 5 V Output, 100 mV / div. Bottom: 14.5 V Output, 500 mV 2 ms / div.

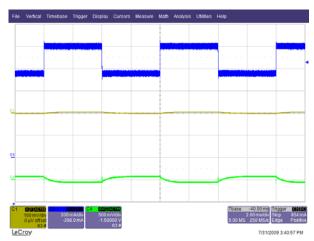
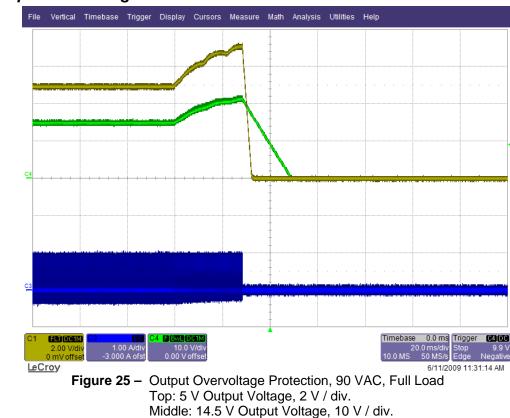



Figure 24 – Transient Response, 265 VAC, 75-100-75% Load at 14.5 V Output. Top: Output Current, 200 mA / div. Middle: 5 V Output, 100 mV / div. Bottom: 14.5 V Output, 500 mV 2 ms / div.

Bottom: Drain Current, 1 A, 20 ms / div.

11.5 Output Overvoltage Protection

11.6 Output Ripple Measurements

11.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F / 50 V ceramic type and one (1) 1.0 μ F / 50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

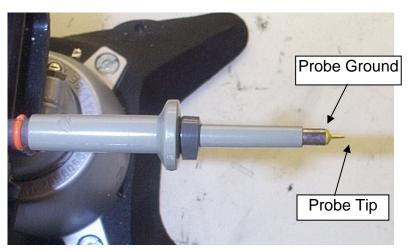


Figure 26 – Oscilloscope Probe Prepared for Ripple Measurement (end cap and ground lead removed).

Figure 27 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter (modified with wires for ripple measurement and two parallel decoupling capacitors added).

11.6.2 Measurement Results

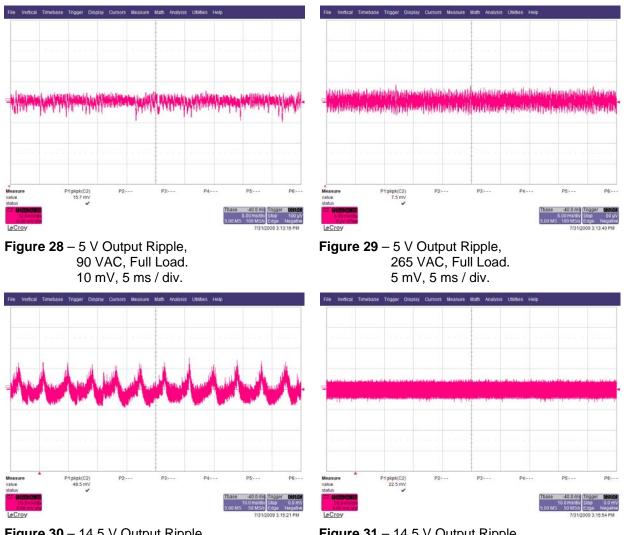
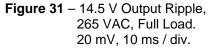



Figure 30 – 14.5 V Output Ripple, 90 VAC, Full Load. 20 mV, 10 ms / div.

12 Audible Noise

12.1 Measurement Set-up

The unit was placed inside a test chamber which was filled with sound-deadening material to reduce the background ambient noise level.

A calibrated microphone was then positioned above the test unit, directly above the location of the internal transformer, at a fixed distance. The output of the microphone was fed into an audio analyzer by Audio Precision Inc. (Audio Precision System II + DSP audio analyzer; Model #: SYS2222).

The output of the supply was connected to an electronic load (outside the chamber) which was swept at a rate of 10 mA / second from no load to full load during testing at 90 V, 115 V, 230 V, and 265 VAC.

Figure 32 – In-House Audio Test Chamber (L: 20" x W: 13" x H: 13").

12.2 Measurement

Audible noise was measured at room temperature with a distance of 4 cm between the microphone and transformer surface. This is an equivalent situation to measuring when the power supply is assembled inside a monitor where the microphone is 3 cm away from the LCD monitor case.

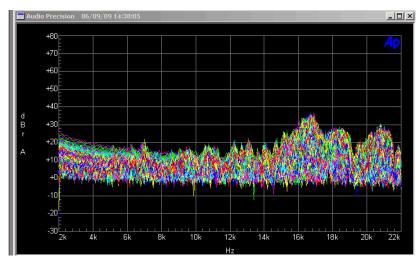


Figure 33 - Composite Audible Noise Profile with the Load Swept from Zero to Maximum at 90 VAC.

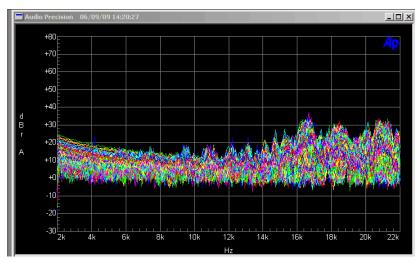


Figure 34 – Composite Audible Noise Profile with the Load Swept from Zero to Maximum at 115 VAC.

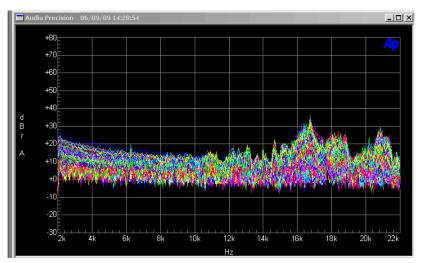


Figure 35 – Composite Audible Noise Profile with the Load Swept from Zero to Maximum at 230 VAC.

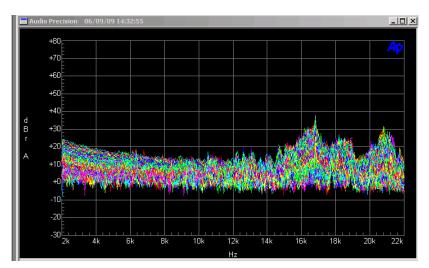


Figure 36 - Composite Audible Noise Profile with the Load Swept from Zero to Maximum at 265 VAC.

13 Conducted EMI

Radiated EMI has been tested with the board mounted on a ground plane while the output return is also grounded.

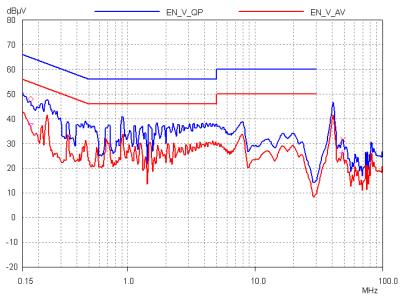


Figure 37 - Conducted EMI, Full Load, 115 VAC, 60 Hz.

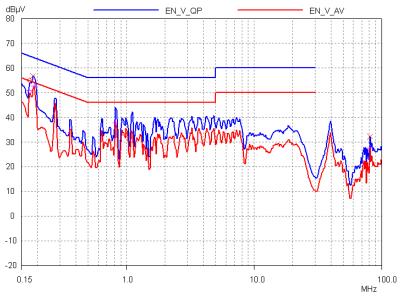


Figure 38 - Conducted EMI, Full Load, 230 VAC, 60 Hz.

14 Revision History

Date	Author	Revision	Description & changes	Reviewed
17-Aug-09	JY	1.0	Initial release	Apps & Mktg

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2009 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

JAPAN

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales*@*powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 *e-mail: chinasales* @powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales* @powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales* @*powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 *e-mail: indiasales*@powerint.com

ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009

eurosales@powerint.com

e-mail:

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi,

Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales*@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales @powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

