

Design Example Report

Title	3.25 W CV/CC Charger Using LinkSwitch [™] -II That Meets New 2011 European Standards				
Specification	35 – 265 VAC Input; 5 V, 650 mA Output				
Application	ow Cost European Charger or Adapter				
Author	Applications Engineering Department				
Document Number	DER-279				
Date	July 8, 2011				
Revision	1.0				

Summary and Features

- Revolutionary control concept provides very low cost, low part-count solution
 - 0
 - Primary-side control eliminates secondary-side control and optocoupler 700 V MOSFET rating allows Clampless[™] design eliminates primary clamp components 0
 - Provides ±5% constant voltage (CV) and ±18% constant current (CC) accuracy 0 including output cable voltage drop compensation.
 - Over-temperature protection tight tolerance (±5%) with hysteretic recovery for safe PCB 0 temperatures under all conditions
 - Auto-restart output short circuit and open-loop protection 0
- EcoSmart[™] Easily meets all current international energy efficiency standards China (CECP) / CEC / ENERGY STAR 2 / EU CoC
 - No-load input energy consumption: <30 mW at 230 VAC 0
 - Ultra-low leakage current: <5 µA at 265 VAC input (no Y capacitor required) 0
 - Design easily meets EN550022 and CISPR-22 Class B EMI with >8 dB margin
- Meets IEC 61000-4-5 Class 3 AC line surge
- Meets IEC 62684 common mode voltage of DC output
- Meet new European Standard EN 301 489-34 specification
- Meets <5 µA battery discharge requirement
- Output always higher than 4 V with load transient from no-load to 0.5 A.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>.

> **Power Integrations** 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1 Introduction	4
2 Power Supply Specification	6
3 Schematic	7
4 Circuit Description	8
4.1 Input Filter	8
4.2 LinkSwitch-II Primary	8
4.3 Output Rectification and Filtering	8
4.4 Output Regulation	9
5 PCB Layout	
6 Bill of Materials	
7 Transformer Specification	
7.1 Electrical Diagram	
7.2 Electrical Specifications	
7.3 Materials	
7.4 Transformer Build Diagram	
7.5 Transformer Construction	13
8 Transformer Design Spreadsheet	14
9 Performance Data	17
9.1 Active Mode Efficiency	
9.2 Energy Efficiency Requirements	
9.2.1 USA Energy Independence and Security Act 2007	
9.2.2 ENERGY STAR EPS Version 2.0	19
9.2.3 EC Code of Conduct Version 3	20
9.3 No-load Input Power	21
9.4 Regulation	22
9.4.1 Line and Load	22
10 Thermal Performance	23
11 Waveforms	24
11.1 Drain Voltage and Current, Normal Operation	24
11.2 Output Voltage Start-up Profile	25
11.3 Drain Voltage and Current Start-up Profile	
11.4 Load Transient Response	27
11.5 Short-Circuit Output Current	
11.6 Output Ripple Measurements	
11.6.1 Ripple Measurement Technique	
11.6.2 Output Ripple Measurement Results	
11.7 Common Mode Noise Voltage of the DC Output and M	easure Set-up32
11.8 Common Mode Noise Voltage Measurement Set-up Di	agram32
11.8.1 Common Mode Noise Voltage Verification Set-up.	
12 Line Surge	
13 Conducted EMI	
14 Revision History	

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a 2.5 W (minimum), 3.25 W (typical) constant voltage/ constant current (CV/CC) universal input charger power supply for a cell phone. The power supply utilizes the LinkSwitch-II.

The LinkSwitch-II family was developed to cost effectively replace all existing solutions in low-power charger and adapter applications. Its controller is optimized for CV/CC charging applications, for minimal external part count, and for very tight control of the output voltage and moderate current regulation without the use of an optocoupler. The integrated 700 V switching MOSFET and ON/OFF control function achieve both high efficiency under all load conditions, and low no-load energy consumption. No-load performance and operating efficiency exceed all current and proposed international energy efficiency standards.

This circuit takes advantage of Power Integration's Clampless transformer construction techniques. This makes use of the primary winding capacitance to clamp the voltage across the LinkSwitch-II

A unique ON/OFF control scheme provides voltage regulation, as well as support for cable voltage-drop compensation, and tight regulation over a wide temperature range. The output current is regulated by modulating the switching frequency to provide moderately tight CC characteristic.

The LinkSwitch-II controller consists of an oscillator, feedback (sense and logic) circuitry, a 5.8 V regulator, BYPASS (BP) pin programming functions, over-temperature protection, frequency jittering, current-limit circuitry, leading-edge blanking, a frequency controller for CC regulation, and an ON/OFF state machine for CV control.

The LinkSwitch-II also provides a sophisticated range of protection features including auto-restart for control loop component open/short circuit faults and output short-circuit conditions. Accurate hysteretic thermal shutdown ensures safe average PCB temperatures under all conditions.

The IC package provides extended creepage distance between high and low voltage pins (both at the package and the PCB), which is required in very humid conditions to prevent arcing and to further improve reliability.

The LinkSwitch-II can be configured as either self-biased from the high voltage drain pin or supplied via an optional bias supply. When configured as self-biased, the very low IC current consumption provides a worst-case no-load power consumption of approximately 200 mW at 265 VAC, well within the 300 mW European Union CoC requirement. When fed from an optional bias supply (as in this design), the no-load power consumption reduces to <30 mW.

The EE16 transformer bobbin in this design provides extended creepage to meet safety spacing requirements.

This document contains the power supply specifications, schematic, bill of materials, transformer specifications, and typical performance characteristics for this reference design using the LinkSwitch-II.

Figure 1 – Populated Circuit Board Photograph.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Мах	Units	Comment
Input Voltage Frequency No-load Input Power (230 VAC)	V _{IN} f _{LINE}	85 47	50/60	265 64 0.03	VAC Hz W	2 Wire – no P.E.
Output Output Voltage Output Ripple Voltage Output Current Output Power Output Cable Resistance Name plate output rating Nameplate Voltage Nameplate Current	Vout V _{RIPPLE} Iout Pout R _{CBL} V _{NP} I _{NP}	4.75 0.5	5.0 0.65 3.25 0.4 5 0.5 2.5	5.25 80 0.8	V mV A W Ω V A W	± 5% 20 MHz bandwidth #26 AWG, 1.2 M long
Efficiency Full Load Required average efficiency per EU Code of Conduct V4 Required average efficiency per	η η η _{EU(CoC)} η _{ES2.0}	70 68 68	2.3 W Measured at Pout 25 °C Measured Measured per Energy Star "Test Method for Calculating the Energy Efficiency of Single-Voltage External AC-DC and AC-AC Power Supplies (August 11, 2004)".			Measured at P _{OUT} 25 °C ar "Test Method for Calculating the External AC-DC and AC-AC
Environmental Conducted EMI Safety	N Designe	leets CISF	PR22B / EI IEC950 / I	N55022B JL1950 CI	ass II kV	> 6 dB margin 1.2/50 μs surge, IEC 1000-4-5, Series Impedance:
ESD Ambient Temperature	Т _{амв}	1 2 -15 0	1 Differential Mod 2 Common Mode 15 15 kV 0 40 °C Free convection, s Assembly is installed i plastic enclos		Differential Mode: 2 Ω Common Mode: 12 Ω Contact and air discharge onto output connector Free convection, sea level. Assembly is installed in a standard plastic enclosure.	

3 Schematic

4 Circuit Description

This circuit uses the LinkSwitch-II in a primary-side regulated flyback power supply configuration.

4.1 Input Filter

The AC input power is rectified by diodes D1 through D4. Bulk storage capacitors C1 and C2 filter the rectified AC. Inductor L1 forms a pi (π) filter with C1 and C2 to attenuate conducted differential-mode EMI noise. This configuration, and the use of Power Integrations' transformer E-Shield[®] technology, allows this supply to comply with EMI standard EN55022 class B, with good margin, and without a Y capacitor. Fusible resistor RF1 provides protection against catastrophic failure. It should be rated to withstand the instantaneous dissipation when the supply is first connected to AC input (while the input capacitors charge) at VAC_{MAX}. This means choosing either an over-sized metal-film or a wire-wound resistor. This design uses a wire-wound resistor for RF1.

4.2 LinkSwitch-II Primary

The LinkSwitch-II device (U1) incorporates the power switching device, an oscillator, a CC/CV control engine, startup circuitry, and protection functions into one IC. The integrated 700 V MOSFET allows sufficient voltage margin for universal input AC applications. The device is completely self-powered from the BYPASS pin (BP) and decoupling capacitor C3. Capacitor C3 also selects the output voltage cable-drop compensation amount. For this design enhanced cable voltage drop compensation was selected by choosing a 10 μ F value. The optional bias circuit consisting of D5, C4, and R2 increases efficiency and reduces the no-load input power to less than 30 mW at 230 VAC.

The rectified and filtered input voltage is applied to one side of transformer T1's primary winding. The integrated MOSFET in U1 drives the other side of T1's primary winding. This design does not require a primary side clamp circuit.

4.3 Output Rectification and Filtering

Transformer T1's secondary is rectified by D6 and filtered by C6 and C7. A Schottky barrier-type diode was selected for higher efficiency. Capacitor C6 and C7 was selected to have a sufficiently low ESR to meet the load transient requirement and output voltage ripple requirement without using an external LC post-filter. For lower cost design with lower requirement for load transient and ripple, only one capacitor is necessary or smaller value capacitor can be used for C6 and C7.

In designs where lower (3% to 4%) average efficiency is acceptable, diode D6 may be replaced by a PN-junction diode to lower cost. Note that R3 and R4 must be re-adjusted to ensure the output voltage stays centered.

Capacitor C5 and R5 form a snubber network to both limit the magnitude of the transient voltage spikes that appear across D6 and reduce radiated EMI.

Resistor R6 form the output pre-load, necessary to prevent the output voltage rising at no-load.

4.4 Output Regulation

The LinkSwitch-II eliminates the optocoupler by using a primary side AC winding sense on T1. The IC regulates by using ON/OFF control for CV regulation and frequency control for CC regulation. The feedback resistors (R3 and R4) were selected using standard 1% resistor values to center both the nominal output voltage and constant current regulation thresholds.

Figure 3 – Printed Circuit Layout (1.050" x 1.970").

Item	Qty	Ref Des	Description	Mfg	Mfg Part Number
1	2	C1 C2	4.7 μF, 380 V, Electrolytic, (8 x 11.5)	XX380VB4R7M8X11LL	Nippon Chemi-Con
2	1	C3	10 μF, 16 V, Ceramic, X5R, 0805	GRM21BR61C106KE15L	Murata
3	1	C4	4.7 µF, 25 V, Ceramic, X7R, 1206	ECJ-3YB1E475M	Panasonic
4	1	C5	1 nF, 50 V, Ceramic, X7R, 0805	ECJ-2VB1H102K	Panasonic
5	2	C6,C7	470 $\mu F,$ 10 V, Electrolytic, Very Low ESR, 72 m $\Omega,$ (8 x 11.5)	EKZE100ELL471MHB5D	Nippon Chemi-Con
6	4	D1 D2 D3 D4	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
7	1	D5	1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF)	DL4007-13-F	Diodes, Inc.
8	1	D6	40 V, 2 A, Schottky, SMD, DO-214AA	SS24-E3/52T	Vishay
9	2	J1 J2	Test Point, WHT, THRU-HOLE MOUNT	5012	Keystone
10	1	J3	1.2 M, #26 AWG, 2.1 mm connector (custom)	3PH323A0	Anam Instruments
11	1	L1	1000 μH, 0.21 A, 5.5 x 10.5 mm	SBC1-102-211	Tokin
12	1	R1	10 kΩ 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ103V	Panasonic
13	1	R2	4.3 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ432V	Panasonic
14	1	R3	9.53 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF9531V	Panasonic
15	1	R4	6.49 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF6491V	Panasonic
16	1	R5	10 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ100V	Panasonic
17	1	R6	3.6 k Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ362V	Panasonic
18	1	RF1	10 Ω , 2 W, Fusible/Flame Proof Wire Wound	CRF253-4 10R	Vitrohm
19	1	T1	Bobbin, EE16 Extended Creepage, Horizontal, 10 pins	TF-1613	Shulin Enterprise
20	1	U1	LinkSwitch-II, SO-8-C LinkSwitch-II Power		Power Integrations

6 Bill of Materials

7 Transformer Specification

7.1 Electrical Diagram

Figure 4 – Transformer Electrical Diagram.

Note: Windings WD3 and WD4 are wound to spread across the entire winding window. These windings interleave each other and there is no tape between these windings.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-5 to pin 10.	3000 VAC
Primary Inductance	Pins 1 and 4 all other windings open, measured at 100 kHz, 0.4 $V_{\text{RMS}}.$	4036 μH, ±10%
Resonant Frequency	Pins 1 and 4, all other windings open.	600 kHz min.
Primary Leakage Inductance	Pins 1 and 4 with pins 7 and 10 shorted, measured at 100 kHz, 0.4 $V_{\text{RMS}}.$	110 μH max.

7.3 Materials

Item	Description
[1]	Core: EE16, NC-2H or equivalent, gapped for ALG = 215 nH/T^2
[2]	Bobbin: EE16, Horizontal, 10 pins (5/5)
[3]	Magnet Wire: #36 AWG
[4]	Magnet Wire: #34 AWG
[5]	Magnet Wire: #33 AWG
[6]	Triple Insulated Wire: #30 AWG
[7]	Tape: 3M 1298 Polyester film, 2.0 mils thick, 8.0 mm wide
[8]	Varnish

7.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

Core Cancelation	Start at pin 1. Wind 25 bifilar turns of item [3] in 1 full layer. Cut finish. Apply one layer of tape [7].
Primary	Start at Pin 4. Wind 45 turns of item [3] in approximately 1 layer. Apply one layer of tape [7]. Wind 46 turns on next layer. Apply 1 layer of tape [7]. Wind 46 turns and finish on pin 1.
Basic Insulation	Use one layer of item [7] for basic insulation.
Sense Winding	Starting at pin 2, wind 7 turns of item [3]. Spread turns evenly across bobbin. Finish at pin 5.
Bias winding	Start at pin 3, wind 6 turns of item [4]. Spread turns evenly across bobbin interleaving with sense winding. Terminate on pin 2.
Basic Insulation	Use one layer of item [7] for basic insulation.
Shield Winding	Temporally start at pin 6. Wind 8 quadfilar turns of item [5] across entire width of bobbin. Terminate on pin 1. Remove start from pin 6 and cut wire such that it fills bobbin width (no gaps).
Basic Insulation	Use one layer of item [7] for basic insulation.
Secondary Winding	Start at pin 10. Wind 8 bifilar turns of item [6] to fill bobbin layer. Finish on pin 7.
Outer Wrap	Wrap windings with 3 layers of tape item [7].
Final Assembly	Assemble and secure gapped core halves. Cut pin 10 and varnish impregnate with item [8].

8 Transformer Design Spreadsheet

ACDC_LNK63X_022509; Rev.1.0; Copyright Power Integrations 2009	INPUT	INFO	OUTPUT	UNIT	ACDC_LNK63X_022509_Rev1-0.xls; IIT Continuous/Discontinuous Flyback Transformer Design Spreadsheet	
ENTER APPLICATION VAR	ABLES					
VACMIN	85			Volts	Minimum AC Input Voltage	
VACMAX	265			Volts	Maximum AC Input Voltage	
fL	50			Hertz	AC Mains Frequency	
VO	5.10			Volts	Output Voltage	
PO	2.95			Watts	Output Power	
n	0.75				Efficiency Estimate	
Z			0.5		Loss Allocation Factor	
tC			3	ms	Bridge Rectifier Conduction Time Estimate	
Clampless Design	YES				Choose 'YES' from the 'clampless Design' drop down box at the top of this spreadsheet for a clampless design. Choose 'NO' to add an external clamp circuit. Clampless design lowers the total cost of the power supply	
CIN	9.40			uFarads	Input Filter Capacitor	
ENTER LinkSwitch-II (LNK6	3X) VARIABI	ES				
LinkSwitch-II Device	LNK63	2DG	LNK6	32DG	LinkSwitch-II (LNK63X) device	
ILIMITMIN			0.135	Amps	LinkSwitch-II (LNK63X) Minimum Current Limit	
ILIMITMAX			0.155	Amps	LinkSwitch-II (LNK63X) Maximum Current Limit	
fS			100000	Hertz	LinkSwitch-II (LNK63X) Switching Frequency	
I2FMIN			1987	A^2Hz	Coefficient)	
I2FMAX			2582	A^2Hz	LinkSwitch-II (LNK63X) Max I2F (Power Coefficient)	
VOR	96.00		96	Volts	Reflected Output Voltage	
VDS			10	Volts	LinkSwitch-II (LNK63X) on-state Drain to Source Voltage	
VD			0.5	Volts	Output Winding Diode Forward Voltage Drop	
DCON			5.16	us	Output Diode conduction time	
KP_TRANSIENT			0.79		Worst case ripple to peak current ratio. Maintain KP_TRANSIENT above 0.25	
ENTER TRANSFORMER CO	RE/CONSTR	UCTION VA	ARIABLES	i		
Core Type	EE16		EE16	5.4.1	Transformer Core size	
Core		EE16 EE16 B		P/N:	PC40EE16-Z	
Bobbin		OBBIN		P/N:	BE-16-118CPH	
AE			0.192	cm^2	Core Effective Cross Sectional Area	
	-		3.5	cm	Core Effective Path Length	
AL			1140	nH/1^2	Display Core Effective Inductance	
В₩			C.0	11111	Sofety Margin Width (Half the Drimony to	
Μ			0.00	mm	Secondary Creepage Distance)	
L	3.00		3		Number of Primary Layers	
NS			8		Number of Secondary Turns	
DC INPUT VOLTAGE PARA	METERS		-			
VMIN			93	Volts	Minimum DC Input Voltage	
VMAX			375	Volts	Maximum DC Input Voltage	
FEEDBACK VARIABLES		r		r		
NFB			7.00		Feedback winding number of turns	
VFLY			4.90	Volts	LinkSwitch-II (LNK63X) turns off	
RUPPER			9.53	k-ohms	Upper resistor of feedback network	
RLOWER			6.81	k-ohms	Lower resistor of feedback network	
Fine Tuning Section						
Measured Output Voltage	5.40		5.40	k-ohms	Actual (Measured) Voltage at the output of power supply	

RLOWER_FINE			6.49	k-ohms	Adjusted (Fine tuned) value of lower resistor			
Bias Winding Parameters					(REOWER). Do not change value of ROFFER			
Blackfinding Fuldinotoro					External Bias winding needed AC stack bias			
Add Bias winding			YES		winding on top of Feedback winding			
VB	11		11	Volts	Bias Winding Voltage			
					Number of Bias winding turns. Bias winding is			
NB			8		assumed to be AC stacked on top of the			
					Feedback winding			
CURRENT WAVEFORM SH	APE PARAMI	ETERS		•				
DMAX			0.54		Maximum Duty Cycle			
IAVG			0.04	Amps	Average Primary Current			
IP			0.14	Amps	Minimum Peak Primary Current			
IR			0.11	Amps	Primary Ripple Current			
IRMS			0.06	Amps	Primary RMS Current			
TRANSFORMER PRIMARY	DESIGN PAR	AMETERS						
LPMIN			3669	uHenries	Minimum Primary Inductance			
LP_TYP			4036	uHenries	Typical (Nominal) Primary Inductance			
LP_TOL			10		Tolerance of Primary inductance			
NP			137		Primary Winding Number of Turns			
ALG			215	nH/T^2	Gapped Core Effective Inductance			
					Maximum Flux Density, (BM<2500) Calculated at			
BM			2223	Gauss	typical current limit and typical primary			
					inductance			
					Peak Flux Density, (BP<3100) Calculated at			
BP			2592	Gauss	maximum current limit and maximum primary			
					Inductance			
BAC			803	Gauss	AC Flux Density for Core Loss Curves (0.5 X			
			1654		Peak to Peak)			
ui			1654		Con Longth (La > 0.1 mm)			
		-	0.10	mm	Effective Robbin Width			
BVVE			25.5	11111	Maximum Brimany Wire Diameter including			
OD			0.19	mm	insulation			
					Estimated Total Insulation Thickness (= 2 * film			
INS			0.04	mm	thickness)			
DIA			0.15	mm	Bare conductor diameter			
					Primary Wire Gauge (Rounded to next smaller			
AWG			35	AWG	standard AWG value)			
СМ			32	Cmils	Bare conductor effective area in circular mils			
CMA		Info	510	Cmils/A	CAN DECREASE CMA < 500 (decrease			
CIMA		1110	512	mp	L(primary layers), increase NS, smaller Core)			
TRANSFORMER SECONDA	RY DESIGN	PARAMETE	RS					
Lumped parameters								
ISP			2.31	Amps	Peak Secondary Current			
ISRMS			1.00	Amps	Secondary RMS Current			
10			0.58	Amps	Power Supply Output Current			
IRIPPLE			0.81	Amps	Output Capacitor RMS Ripple Current			
CMS			199	Cmils	Secondary Bare Conductor minimum circular			
omo			100	011110	mils			
AWGS			27	AWG	Secondary Wire Gauge (Rounded up to next			
5110					larger standard AWG value)			
DIAS			0.36	mm	Secondary Minimum Bare Conductor Diameter			
ODS			1.06	mm	Secondary Maximum Outside Diameter for Triple			
INSS			0.35	mm	Maximum Secondary Insulation Wall Thickness			
VOI TAGE STRESS DADAM								
TOLIAGE OTREGOTARA			1	1	Peak Drain Voltage is highly dependent on			
1					Transformer capacitance and leakage			
VDRAIN			_	Volts	inductance. Please verify this on the bench and			
					ensure that it is below 650 V to allow 50 V			
					margin for transformer variation.			
PIVB			46	Volts	Bias Diode Maximum Peak Inverse Voltage			
PIVS		İ	27	Volts	Output Rectifier Maximum Peak Inverse Voltage			
TRANSFORMER SECONDA	TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)							

DER-279 – 5 V, 650 mA, 3.25 W CV/CC Charger

1st output				
V01	5.1	Volts	Output Voltage (if unused, defaults to single output design)	
IO1	0.578	Amps	Output DC Current	
PO1	2.95	Watts	Output Power	
VD1	0.5	Volts	Output Diode Forward Voltage Drop	
NS1	8.00		Output Winding Number of Turns	
ISRMS1	1.00	Amps	Output Winding RMS Current	
IRIPPLE1	0.81	Amps	Output Capacitor RMS Ripple Current	
PIVS1	27	Volts	Output Rectifier Maximum Peak Inverse Voltage	
CMS1	199	Cmils	Output Winding Bare Conductor minimum circular mils	
AWGS1	27	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	
DIAS1	0.36	mm	Minimum Bare Conductor Diameter	
0051	1.06	mm	Maximum Outside Diameter for Triple Insulated	
0031	1.00	11111	Wire	
2nd output		1		
V02		Volts	Output Voltage	
102		Amps	Output DC Current	
PO2	0.00	Watts	Output Power	
VD2	0.7	Volts	Output Diode Forward Voltage Drop	
NS2	1.00		Output Winding Number of Turns	
ISRMS2	0.00	Amps	Output winding RMS Current	
IRIPPLE2	0.00	Amps	Output Capacitor RMS Ripple Current	
PIV52	3	Volts	Output Rectifier Maximum Peak Inverse Voltage	
CMS2	0	Cmils	Output Winding Bare Conductor minimum circular mils	
AWGS2	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	
DIAS2	N/A	mm	Minimum Bare Conductor Diameter	
ODS2	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire	
3rd output			F	
VO3		Volts	Output Voltage	
103		Amps	Output DC Current	
PO3	0.00	Watts	Output Power	
VD3	0.7	Volts	Output Diode Forward Voltage Drop	
NS3	1.00		Output Winding Number of Turns	
ISRMS3	0.00	Amps	Output Winding RMS Current	
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current	
PIVS3	3	Volts	Output Rectifier Maximum Peak Inverse Voltage	
CMS3	0	Cmils	Output Winding Bare Conductor minimum circular mils	
AWGS3	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	
DIAS3	N/A	mm	Minimum Bare Conductor Diameter	
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire	
Total power	2.95	Watts	Total Output Power	
Negative Output	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2	

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

9.1 Active Mode Efficiency

Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.

Percent of Full Load	Efficiency (%)		
	115 VAC	230 VAC	
25	68.5	75.3	
50	77.9	74.5	
75	77.0	74.5	
100	75.7	74.6	
Average	77.2 74.8		
EC Code of Conduct (V4) requirement	t 68		
ENERGY STAR 2.0 requirement	6	8	

Note: Measurements were taken at the end of a 1.2M long #26 AWG 0.4 Ω cable.

9.2 Energy Efficiency Requirements

The external power supply requirements below all require meeting active mode efficiency and no-load input power limits. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of output current (based on the nameplate output current rating).

For adapters that are single input voltage only then the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the standard.

The test method can be found here:

<u>http://www.energystar.gov/ia/partners/prod_development/downloads/power_supplies/EP</u> <u>SupplyEffic_TestMethod_0804.pdf</u>

For the latest up to date information please visit the PI Green Room:

http://www.powerint.com/greenroom/regulations.htm

9.2.1 USA Energy Independence and Security Act 2007

This legislation mandates all single output single output adapters, including those provided with products, manufactured on or after July 1st, 2008 must meet minimum active mode efficiency and no load input power limits.

Active Mode Efficiency Standard Models

Minimum Efficiency in Active Mode of Operation
$0.5 \times P_{O}$
0.09 × ln (P _o) + 0.5
0.85

In = natural logarithm

No-load Energy Consumption

,		
Nameplate Output (P _o)	Maximum Power for No-load AC-DC EPS	
All	\leq 0.5 W	

This requirement supersedes the legislation from individual US States (for example CEC in California).

9.2.2 ENERGY STAR EPS Version 2.0

This specification takes effect on November 1st, 2008.

Active Mode Efficiency Standard Models

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation	
\leq 1 W 0.48 × P ₀ + 0.14		
> 1 W to \leq 49 W	0.0626 × ln (P _o) + 0.622	
> 49 W	0.87	

In = natural logarithm

Active Mode Efficiency Low Voltage Models (V₀<6 V and I₀ \ge 550 mA)

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
≤ 1 W	$0.497 \times P_{O} + 0.067$
> 1 W to \leq 49 W	0.075 × ln (P _o) + 0.561
> 49 W	0.86

In = natural logarithm

No-load Energy Consumption (both models)

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS
0 to < 50 W	\leq 0.3 W
≥ 50 W to ≤ 250 W	\leq 0.5 W

9.2.3 EC Code of Conduct Version 3

Active Mode Efficiency Standard Models

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
≤ 1 W	0.44 × P _o + 0.145
> 1 W to \leq 36 W	0.08 × ln (P _o) + 0.585
> 36 W	0.87

In = natural logarithm

Mobile handheld battery applications

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation	
≤ 1 W	$0.5 \times P_{O}$ + 0.029	
> 1 W to \leq 8 W	0.095 × In (P _o) + 0.529	
	In = natural logarithm	

No-load Energy Consumption

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS
\geq 0.3 W to < 50 W	≤ 0.25 W
\geq 50 W to < 250 W	\leq 0.5 W

No-load Energy Consumption (mobile handheld battery applications)

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS
≥ 0.3 W to ≤ 8 W	\leq 0.25 W (current)
≥ 0.3 W to ≤ 8 W	≤ 0.15 W (from 1/1/2011)

9.3 No-load Input Power

Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 50 Hz.

9.4 Regulation

9.4.1 Line and Load

Figure 8 – Line and Load Regulation with 10 μ F Bypass Capacitor and #26 AWG Output Cable, Room Temperature.

10 Thermal Performance

The temperature of the LinkSwitch-II was measured by soldering a thermocouple to the source pin of the device. A thermocouple was soldered to Drain of output diode to measure the temperature of D6. For the 40 $^{\circ}$ C ambient test, the power supply was placed into a small box which was enclosed into a bigger box.

Itom	Temperature (°C)			
nem	85 VAC	115 VAC	230 VAC	265 VAC
Ambient	40	40	40	40
LinkSwitch-II (U1)	76	72	73	77
Output Diode (D6)	70	69	70	71

Figure 9 – Thermal Image of Assembly (Bottom) V_{IN:} 85 VAC, Full Load, LinkSwitch-II is Highest Recorded Temperature at 49.3 °C.

Figure 10 – Thermal Image of Assembly (Bottom) V_{IN:} 265 VAC, Full Load, LinkSwitch-II is Highest Recorded Temperature at 51.5 °C.

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

11.2 Output Voltage Start-up Profile

Figure 13 – 115 VAC, Full load. 1 V, 10 ms / div.

Figure 15 – 230 VAC, Full load. 1 V, 10 ms / div.

Figure 14 – 115 VAC, No-Load. 1 V, 10 ms / div.

Figure 16 - 230 VAC, No-Load.1 V, 10 ms / div.

11.3 Drain Voltage and Current Start-up Profile

Figure 17 – 85 VAC Input and Maximum Load. Upper: V_{DRAIN}, 100 V / div. Lower: I_{DRAIN}, 100 mA / div, 5 ms / div.

Figure 18 – 265 VAC Input and Maximum Load. Upper: V_{DRAIN}, 200 V / div. Lower: I_{DRAIN}, 100 mA / div, 5 ms / div.

11.4 Load Transient Response

In the figures shown below, the oscilloscope was triggered using the load current step as a trigger source. Load transient from 50% load to full load and load transient from no load to full load are shown in the following pictures. As can be seen from the following picture, the V_{OUT} is always higher than 4 V even with load transient from no-load to full load 0.5 A.

Figure 19 – 115 VAC, 50-100-50% Load Step. Upper: V_{RIPPLE}, 100 mV, 10 ms / div. Lower: I_{LOAD}, 0.2 A / div.

Figure 20 – 230 VAC, 50-100-50% Load Step. Upper: V_{RIPPLE}, 100 mV, 10 ms / div. Lower: I_{LOAD}, 0.2 A / div.

Figure 22 – 230 VAC, No-load to Full Load. Minimum V_{OUT} 4.17 V Upper: V_{RIPPLE} , 100 mV, 10 ms / div. Lower: I_{LOAD} , 0.2 A / div.

11.5 Short-Circuit Output Current

The photos below show the output current during auto-restart with the output shorted at the end of the #26 AWG cable.

Figure 23 – 115 VAC. I_{OUT} 0.2 A / div, 500 ms / div.

11.6 Output Ripple Measurements

11.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 25 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 26 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)

11.6.2 Output Ripple Measurement Results

5 ms and 20 $\mu s,$ 50 mV / div.

Figure 28 – 5 V Ripple, 115 VAC, Full Load. 60 mV pk-pk 5 ms and 20 μ s, 50 mV / div.

71 mV pk-pk

Figure 30 – 265 VAC, Full Load. 61.4 mV pk-pk 5 ms and 20 μs, 50 mV /div.

11.7 Common Mode Noise Voltage of the DC Output and Measure Set-up

The design passed requirements of EN 301 489-34 V1.1.1 (V_{CM} < 95 V_{P-P}).

CH1: Common Mode Voltage; 10 V / div., 5 ms / div. CH2: Reference Voltage; 10 V / div., 5 ms / div.

11.8 Common Mode Noise Voltage Measurement Set-up Diagram

Figure 34 – Set-up Diagram.

Figure 35 – Common Mode Noise Voltage Verification Test Set-up.

Figure 36 – Common Mode Noise Voltage Verification Test Set-up.

12 Line Surge

Differential and common mode input line 1.2 / 50 μ s surge testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)
+1000	230	L to N	90	Pass
-1000	230	L to N	90	Pass
+2000	230	L, N to Output	90	Pass
-2000	230	L, N to Output	90	Pass

100 kHz ring wave, 500 A short circuit current, differential and common mode.

	Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)
ĺ	1000	230	L to N	90	Pass
ſ	1000	230	L. N to Output	90	Pass

Unit passes under all test conditions.

13 Conducted EMI

EMI of line and neutral were scanned into the same picture, with output return connected at artificial hand. Margin of 9 dB was measured at both high line and low line.

Figure 37 – Conducted EMI, Maximum Steady-State Load with Artificial Hand 115 VAC, 60 Hz, and EN55022 B Limits.

Figure 38 – Conducted EMI, Maximum Steady-State Load With Artificial Hand, 230 VAC, 60 Hz, and EN55022 B Limits.

14 Revision History

Date	Author	Revision	Description and Changes	Reviewed
08-Jul-11	PL	1.0	1.0 Initial Release	

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com*

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 *e-mail: indiasales@powerint.com*

ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com* Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales@powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

