Design Example Report

Title	52 W Nominal and 82 W Peak Power Multi- Output Flyback Converter with One CV and One CC Using InnoMux-2
Specification	EP IMX2268C
$60 \mathrm{VAC}-755 \mathrm{VAC}$ Input; 12 V / 2 Anm / 4.5 Apk,	
Application	$32^{\prime \prime}$ TV PSU
Author	Applications Engineering Department
Document Number	DER-714
Date	February 26, 2024
Revision	1.0

Summary and Features

Unique single-stage conversion, multiple-output, flyback architecture enabling:

- High efficiency across the universal line range
- High regulation accuracy - independently regulated $12 \mathrm{~V} / 2 \mathrm{~A}$ nominal and 4.5 A peak CV output
- One CC (LED) output with wide string voltage range of 60 V to 75 V
- Configurable for
- Analog dimming mode
- Straight PWM dimming mode
- Filtered PWM dimming mode
- Hybrid dimming mode
- Safety features
- Output overvoltage protection (OVP), eliminating the need for a fault protection optocoupler
- Output power limit set independently for each output
- Accurate thermal protection with hysteretic shutdown
- Input voltage monitor with accurate brown-in/brown-out and overvoltage protection
- Audible noise is 24 dBA in operation mode, and 19 dBA in standby mode

InnoMux-2 is the industry first single chip AC/DC with isolated, safety-rated integrated multiple feedbacks. In addition, the pulse sharing significantly reduce the audible noise to allow it being used in quiet appliance.

The control chip incorporates isolated feedback and communication channels, combining all the benefits of secondary-side control with the simplicity of primary-side regulation.

The new architecture achieves tight cross regulation across multiple outputs and high overall efficiency while simplifying the overall system by obviating the need for post-regulation. The single-stage converter reduces board size significantly and reduces the part count compared to the equivalent conventional converter based on multiple conversion stage topology.

[^0]Table of Contents
Summary and Features 2
1 Introduction 6
2 Power Supply Specification 8
3 Schematic 9
4 Bill of Materials 10
5 PCB Assembly 12
6 Circuit Description 13
6.1 Input Rectifier and EMI Filter 13
6.2 Primary-Side. 13
6.2.1 Primary Switch Arrangements 13
6.2.2 Primary-Side Controller Power Source and OVP Protection 13
6.2.3 Primary-Side OVP, Brown-In and Brown-Out Protection 13
6.2.4 Primary Peak Current Limit 13
6.3 Secondary-Side 14
6.3.1 Primary to Secondary-Side Communication 14
6.3.2 InnoMux-2 Power Supply 14
6.3.3 Selection MOSFET Drive 14
6.3.4 Output Control 14
6.3.5 LED Current Control and Dimming 15
6.3.6 Output Power Limiting 15
6.3.7 Standby Mode 16
6.3.8 Start-Up Sequence 17
7 Connection Diagram 20
8 PCB Layout 21
9 Transformer (T1) \& CMC (L2) Specification 23
9.1 Core Information 23
9.2 Bobbin Information 24
9.3 Electrical Diagram 25
9.4 Winding Stack Diagram 26
9.5 Transformer Electrical Specification. 26
9.7 Materials List 27
9.8 Transformer Construction 27
9.9 Transformer Test. 28
9.10 Winding Illustration 29
9.11 CMC Specification 35
9.12 CMC Winding Illustration 35
10 Performance 36
10.1 RTM Curve 36
10.2 Full Load Efficiency vs. Line 37
9.13 Efficiency vs. Load 38
9.14 Output Load Regulation 39
9.15 Standby Input Power ($\mathrm{I}_{\text {LED }}=0 \mathrm{~A}$) 41
9.16 LED Dimming 42
9.17 CV Load Transient Response 44
Bandwidth of the channel is 20 MHz 44
9.18 Switching Waveforms 48
9.18.1 Primary Switch Maximum Voltage 48
9.18.2 Primary Switching Frequency 52
9.18.3 Transformer Current Waveforms 53
9.19 Start-Up 55
9.19.1 Full Load Start-up 55
9.19.2 No-Load Start-up 56
9.19.3 Start-up Under CV and LED Fault Conditions 58
9.19.3.1 Start-up Under CV Fault Conditions 59
9.19.3.2 Start-up Under LED Fault Conditions 67
9.20 Component Peak Voltages 75
9.20.1 SR Diode Reverse Voltage 75
9.20.2 CV1 Selection FET Maximum Voltage 81
9.20.3 LED Rectifier Diode Maximum Reverse Voltage 87
9.20.4 BPP Rectifier Diode Reverse Voltage. 93
9.21 Brown - Out and Brown - In 99
9.22 Output Protections. 101
9.22.1 CV Output Overvoltage Protection. 101
9.22.2 LED Output Overvoltage Protection 103
9.23 Output Ripple Measurements. 104
9.23.1 Ripple Measurement Technique 104
9.23.2 CV Output Ripple 105
9.23.2.1 Test Set-up 105
10 Conducted EMI 107
10.1 Line Input 115 VAC. 107
10.2 Line Input 230 VAC. 108
11 Thermal Performance 109
12 Audible Noise Performance 113
13 Combination Wave Surge Test 114
13.1 Differential Mode Surge (L1 to L2), 230 VAC Input 114
13.2 Common Mode Surge (L1 to PE), 230 VAC Input 114
13.3 Common Mode Surge (L2 to PE), 230 VAC Input 115
13.4 10.16.4 Common Mode Surge (L1+L2+PE), 230 VAC Input. 115
13.5 ESD Test. 116
14 Revision History 117

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a Switch Mode Power Supply (SMPS) intended for TV applications. The SMPS, utilizes the Power Integration's InnoMux-2 controller. The controller implements a multiplexing power control algorithm. Energy stored in the primary winding of the transformer during primary conduction interval is subsequently delivered to only one of the converter's main outputs (CV1 or LED). More specifically, this is achieved by controlling the switch SW1 (Figure 1).Utilizing a single magnetic component (transformer TX 1), the controller directs the energy flow as needed to all outputs based on respective loading requirements, thus keeping each output accurately controlled. If the energy pulse needs to be delivered to the CV1 output, SW1 is turned ON prior to the end of the primary conduction interval. Otherwise, if SW1 is OFF, the energy is delivered to the LED output via the rectification diode D1.

The SMPS has one Constant Voltage (CV) outputs, $12 \mathrm{~V} / 2 \mathrm{Anm} / 4.5 \mathrm{Apk}$ and a single string Constant Current (CC) output, capable of delivering maximum of 0.38 A current into an LED stack with voltage from 60 V to 75 V . The current through the LED stack is controlled from zero to maximum by 2 PWM dimming signals (DIM1 and DIM2). The Power Supply Unit (PSU) can deliver total maximum continuous output power of 52 W and peak output power of 82 W , with universal mains input (from 90 VAC to 265 VAC).

Figure 1 - DER-714 High Level Schematic.
The VCV1 \& VLED pins continuously sense the output voltages. If the voltage of any of the outputs drops below regulation level, the multi-output controller InnoMux-2 sends a request for pulse to primary-side controller. This type of pulse-by-pulse regulation results in quick response and excellent cross regulation. For the described multiplexing algorithm to work correctly, it is essential that the reflected voltage of each winding must be higher than that of the preceding lower output voltage winding in order to effectively steer the power:

$$
\frac{V_{C V 1}}{N_{C 1}}<\frac{V_{L E D}}{N_{C 1}+N_{L E D}}
$$

Transformer with stacked or independent secondaries may be used as appropriate. The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. The actual performance is illustrated in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
Input Voltage Frequency		$\begin{aligned} & 90 \\ & 47 \end{aligned}$	50/60	$\begin{gathered} 265 \\ 64 \end{gathered}$	$\begin{gathered} \text { VAC } \\ \mathrm{Hz} \end{gathered}$	2 / 3 Wire Input.
Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Peak Current 1 LED Voltage LED Current Total Output Power Continuous Output Power	Vouti VRIPPLE1 Iout1 Iout1_Pk Vout2 Iout2 Pout	$\begin{gathered} 11.4 \\ 0 \\ 60 \\ 0 \end{gathered}$	12 4.5 72 0.38 52	$\begin{gathered} 12.6 \\ 120 \\ 2 \\ \\ 75 \\ 0.38 \end{gathered}$	V mV A A V A W	$\pm 5 \%$. 20 MHz Bandwidth.
Efficiency Full Load No-Load Input Power	η	85		<0.3	$\begin{aligned} & \text { \% } \\ & \text { W } \end{aligned}$	Measured at 115 / 230 VAC, POUT $25^{\circ} \mathrm{C}$. Measured at 230 VAC $25^{\circ} \mathrm{C}$, 12 V 10 mA, STDBY Pin Pulled Low.
Environmental Conducted EMI Safety		Meets CISPR22B / EN55022B				
Surge Common Mode				2	kV	Combination Wave, 12Ω Common Mode.
Surge Differential Mode				1	kV	Combination Wave, 2Ω Differential Mode.
ESD		$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$		$\begin{gathered} \pm 15 \\ \pm 8 \end{gathered}$	kV	Air Discharge. Contact Discharge.
Ambient Temperature	TAMB	0		40	${ }^{\circ} \mathrm{C}$	Free Convection, Sea Level.

3 Schematic

Figure 2 - Schematic.

4 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	BR1	RECT BRIDGE, GP, 800V, 4A, 24-D	Z4DGP408L-HF	Comchip Technology
2	1	C1	$56 \mathrm{pF}, \pm 5 \%, 1000 \mathrm{~V}$ (1 kV), Ceramic Capacitor COG, NPO, 1206	C1206C560JDGAC7800	Kemet
3	1	C2	$470 \mathrm{nF}, 275 \mathrm{VAC}$, Film, X2	PX474K31D5	Carli Electronics
4	1	C3	$150 \mathrm{uF}, 400 \mathrm{~V}$, Electrolytic, (18×45)	UPT2G151MHD	Nichicon
5	2	C5 C6	$120 \mathrm{uF}, 100 \mathrm{~V}$, Electrolytic, Gen. Purpose, (12.5×20)	UHE2A121MHD6	Nichicon
6	1	C8	$100 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X 7 R, 1206	C1206C104K2RACTU	Kemet
7	1	C9	2200PF, $\pm 20 \%$, 500VAC (Y1),760VAC (X1), Ceramic, Y5	440LD22-R	Vishay
8	1	C12	$100 \mathrm{pF}, 200 \mathrm{~V}$, Ceramic, COG, 0805	08052A101JAT2A	AVX Corp
9	3	C13 C14 C26	$560 \mathrm{uF}, 25 \mathrm{~V}, \pm 20 \%$, Al Organic Polymer, Gen. Purpose	A750MS567M1EAAE015	KEMET
10	1	C15	1000 uF, 25 V , Electrolytic, Gen. Purpose, (10×20)	EKMG250ELL102MJ20S	Nippon Chemi- \qquad
11	1	C16	$1 \mathrm{uF}, 25 \mathrm{~V}$, Ceramic, X5R, 0805	C2012X5R1E105K	TDK
12	1	C17	$2.2 \mathrm{nF}, 630 \mathrm{~V}$, Ceramic, X7R, 1206	C3216X7R2J222K115AA	TDK Corp
13	1	C18	$100 \mathrm{nF}, 25 \mathrm{~V}$, Ceramic, X7R, 0805	08053C104KAT2A	AVX Corp
14	1	C19	220pF, $\pm 5 \%$, 500V, Ceramic Capacitor, X7R, 0805	C0805C221JCRAC7800	Kemet
15	1	C21	0.1 uF, 250V, $\pm 10 \%$, Ceramic, $\mathrm{X} 7 \mathrm{R}, 1206$	C3216X7R2E104K160AA	TDK Corporation
16	1	C23	$10 \mu \mathrm{~F}, \pm 10 \%, 16 \mathrm{~V}$, X 7 R , Ceramic Capacitor, MLCC 0805	CL21B106KOQNNNE	Samsung
17	1	C25	4.7 uF, $\pm 10 \%, 16 \mathrm{~V}$, Ceramic, X7R, 0805	GRM21BR71C475KE51L	Murata
18	1	C29	22 uF, 50 V , Electrolytic, (5×11)	UPW1H220MDD	Nichicon
19	1	D1	Diode 600 V 3A Surface Mount SMB	STTH3L06U	STMicroelectro nics
20	1	D2	Diode, 150 V, 1A, Surface Mount DO-214AC, SMA	STPS1150A	STMicroelectro nics
21	1	D3	DIODE, SCHOTKY, 100V, 0.075A, SOD123	BAT46W-TP	Micro Commercial
22	1	D4	Diode, Avalanche, $1000 \mathrm{~V}, 1.5 \mathrm{~A}$, (SMA)	US1M-13-F	Diode Inc.
23	1	D5	DIODE ZENER 30V 500MW SOD123	MMSZ5256B-7-F	Diodes, Inc
24	1	D6	Zener Diode, $24 \mathrm{~V}, 1 \mathrm{~W}, \pm 5 \%$, (SMA)	SMAZ24-13-F	Diodes Incorporated
25	1	D8	Diode 150 V 6A DPak (2 Leads + Tab)	DSS6-015AS-TRL	IXYS
26	1	F1	$2 \mathrm{~A}, 250 \mathrm{~V}$, Slow, TR5	37212000411	Wickman
27	1	J1	6Position (1×6) header, 5 mm (0.196) pitch, Vertical, Screw	1715190	Phoenix Contact
28	1	J2	4 Position (1 x 4) header, $5 \mathrm{~mm}(0.196)$ pitch, Vertical, Screw	1715048	Phoenix Contact
29	1	J3	3 Position Wire to Board Terminal Block0.300" (7.62mm)	282845-3	TE Connectivity AMP Connectors
30	2	JP1 JP2	Wire Jumper, Non insulated, 20 AWG, 0.2 in	8020000100	Belden
31	1	L1	CMC 10.3MH 2.0A 0.15OHM WIDE IMP	SSR21NVS-M20103	KEMET
32	1	L2	200 uH @ 100kHz, Common Mode Choke	30-00512-00	Power Integrations
33	1	L3	FIXED IND, 3.3UH, $\pm 20 \%, 5.2 \mathrm{~A}, 16 \mathrm{MOHM}, \mathrm{TH}$	ELC10D3R3E	PANASONIC ELECTRONIC

Power Integrations, Inc.
www.power.com

34		MTG_HOLES	Mounting Hole M 4		
35	1	Q1	$\begin{aligned} & \text { MOSFET,N-Channel, 40V, 36A (Tc), 3.5W (Ta), 7.8W (Tc), } \\ & \text { 8-SO } \end{aligned}$	SI4154DY-T1-GE3	Vishay Siliconix
36	1	Q3	MOSFET, N-Channel, 100 V ,1.8A (Ta), 1.8W (Ta),SOT223	BSP372NH6327XTSA1	Infineon Technologies
37	2	R1 R2	RES, 22 R, 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ220V	Panasonic
38	1	R4	RES, 10 R, 1\%, 1/8 W, Thick Film, 0805	ERJ-6ENF10R0V	Panasonic
39	3	R5 R12 R14	RES, $2.00 \mathrm{M}, 1 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8ENF2004V	Panasonic
40	1	R6	RES, $3.3 \mathrm{R}, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ3R3V	Panasonic
41	1	R9	RES, 22.1 R, 1\%, 1/4 W, Thick Film, 1206	ERJ-8ENF22R1V	Panasonic
42	1	R10	RES, 0 R, 5\%, 1/8 W, Thick Film, 0805	RMCF0805ZT0R00	Stackpole Electronics Inc
43	2	R11 R32	RES, 4.7 R, 1\%, 1/4 W, Thick Film, 1206	ERJ-8RQF4R7V	Panasonic
44	1	R13	RES, 47 R, 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
45	1	R15	RES, 18 R, 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ180V	Panasonic
46	1	R16	RES, $100 \mathrm{k}, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
47	2	R17 R18	$\begin{aligned} & \text { RES, } 0.5 \mathrm{R}, 1 \%, 0.5 \mathrm{~W}, 1 / 2 \mathrm{~W} \text {, Thick Film, }-55^{\circ} \mathrm{C} \sim \\ & 155^{\circ} \mathrm{C}, 1206 \end{aligned}$	RL1206FR-7W0R5L	YAGEO
48	1	R19	RES, 47 R, 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
49	1	R20	RES, 5.1 k, 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ512V	Panasonic
50	2	R22 R27	RES,100 kOhms $\pm 1 \% 0.1 \mathrm{~W}, 1 / 10 \mathrm{~W}$ Chip Resistor 0603	RC0603FR-07100KL	Yageo
51	3	R29 R30 R31	RES, 7.5 k, 1\%, 1/4 W, Thick Film, 1206	ERJ-8ENF7501V	Panasonic
52	4	R33 R34 R35 R36	RES,100 Ohms $\pm 5 \% 0.1 \mathrm{~W}, 1 / 10 \mathrm{~W}$ Chip Resistor 0603	RC0603JR-07100RL	Yageo
53	1	RT2	NTC Thermistor, 1.3 Ohms, 7 A	MF72-001.3D13	Cantherm
54	1	T1	Bobbin, EQ27/14, 11 pins, 6pri, 5sec	YT-2701	www.dgytdz.co m
55	1	U1	MINNO-2 test symbol with 24 pins and EP	IMX2268C	Power Integrations
56	1	VDR1	$275 \mathrm{Vac}, 45 \mathrm{~J}, 10 \mathrm{~mm}$, RADIAL	V275LA10P	Littlefuse
57	1	VR2	137V Clamp, 4.4A Ipp, Unidrirectional TVS Diode(SMBJ)	SMBJ85A	Littelfuse
58	2	VR5 VR6	DIODE ZENER 5.6V 500MW SOD123	MMSZ5232B-7-F	Diodes, Inc

5 PCB Assembly

Figure 3 - PCB, Top View.

Figure 4 - PCB, Bottom View.

6 Circuit Description

6.1 Input Rectifier and EMI Filter

Fuse F1 isolates the circuit and provides protection from component failure, and the common mode chokes L1 and L2 with capacitor C2 attenuation for EMI. Bridge rectifier BR1 rectifies the AC line voltage and provides a full wave rectified DC voltage across the filter capacitor C3.VDR1 provides protection against differential voltage surges. Resistor RT2 (NTC) limits the inrush current. Capacitor C9 is used to mitigate the common mode EMI.

6.2 Primary-Side

6.2.1 Primary Switch Arrangements

The transformer primary is connected between the input DC bus (TXPRI+) and the drain D of the integrated primary switch of InnoMux-2 (U1 pin 24).

A Zener type primary clamp ($\mathrm{R} 11, \mathrm{R} 29, \mathrm{R} 30, R 31, \mathrm{VR} 2, C 17, D 4$) is used to limit the peak drain voltage of U 1 at the instant of turn-off of the switch inside U 1 .

6.2.2 Primary-Side Controller Power Source and OVP Protection

The primary-side controller is part of the InnoMux-2 (U1). It is self-starting, using an internal high-voltage current source to charge the BPP capacitor C25, when AC voltage is first applied to the converter input. During normal operation (steady-state) the primaryside of the controller is powered from an auxiliary winding on the main transformer. The voltage across this winding is rectified and filtered using diode D2 and capacitor C29, and then connected to the BPP pin via a current limiting resistor R20.

6.2.3 Primary-Side OVP, Brown-In and Brown-Out Protection

A crude primary-side output overvoltage protection (OVP) is implemented by Zener diode D5 and the series resistor R19. In the event of an uncontrolled overvoltage at the output, the auxiliary winding voltage increases and causes breakdown of D5 which then causes a current to flow into the BPP pin of IC U1. If this current exceeds ISD threshold, InnoMux2 controller will latch off and prevent any further increase in output voltage.

Resistor R12 and R14 provide input voltage sense protection for under voltage and over voltage conditions.

6.2.4 Primary Peak Current Limit

The value of capacitor C25 is used to set the maximum primary current to STANDARD or to INCREASED level. In this case $4.7 \mu \mathrm{~F}$ capacitance sets the primary-side controller peak current limit to its INCREASED level of 2.6 A.

6.3 Secondary-Side

The secondary-side of the InnoMux-2 (U1) is powered from the 5 V BPS rail generated internally. Capacitor C23 is a local decoupling capacitor.

6.3.1 Primary to Secondary-Side Communication

The secondary-side of the InnoMux-2 (U1) sends a request to the primary-side controller to initiate a switching cycle, by sending a pulse via the internal FluxLink, a galvanically isolated communication channel.

6.3.2 InnoMux-2 Power Supply

During start-up the InnoMux-2 secondary-side controller is powered from LED rail via R10 or from FWD pin. There is a local decoupling capacitor C21 connected close to the VLED pin of U1. R10 and C21 are optional. An internal regulator reduces the LED+ voltage to 5 V and outputs it to the BPS bus (U1 pin 6).

In steady-state the voltage on VCV1 (U1 pin 10) exceeds VCV1 ${ }_{\text {min }}(7.4 \mathrm{~V}$ to 9.3 V). The internal BPS regulator input is switched from VLED to VCV1 pin to reduce power dissipation in the regulator. R6 and C20 are optional. They provide local decoupling as well as ESD protection.

6.3.3 Selection MOSFET Drive

The gate drive amplitude for the selection MOSFET Q1 is approximately equal to the voltage on the BPS rail (5 V). Consequently, logic level MOSFETs are used. Capacitor C18 is charged up to the level of the $\mathrm{V}_{\text {cv1 }}$ from the CV1 via diode (D3) to the CDR1 pin. When the selection MOSFET needs to be gated on, CDR1 pin voltage is raised from GND to BPS, and the selection MOSFET gate voltage (the other terminal of the capacitor C 18) is lifted to $\mathrm{V}_{\mathrm{CV} 1}+\mathrm{V}_{\mathrm{BPS}}$.

The secondary control circuit in InnoMux-2 needs access to the idle ring waveform in order to calculate the its timing and facilitate valley switching. Such access is ensured through the FW pin by keeping Q1 on after the secondary conduction time has expired.

6.3.4 Output Control

Output rectification for the CV1 output is provided by the diode (D8) and the CV1 selection MOSFET (Q1). A Π - type LC filter (C13, C14, C26, C15 and L3) ensures low output ripple voltage. The first stage filter capacitors C13, C14, C26 have low ESR to minimize the switching noise.Small multilayer ceramic (MLCC) capacitor C16 is connected across the CV1 output terminals and provide low impedance bypass for any high frequency noise components.

Output rectification for the LED output is provided by diodes (D8 and D1). Capacitors C5 and C 6 is used to provide energy storage and filtering at the LED output.

The RC snubber network R1, R2 and C1 damps high-frequency ringing across the rectifier diode D1.

The RC snubber network R9 and C19 damps high-frequency ringing across the rectifier diode D8.

Zener diode D6 is used as a voltage clamp for the transformer CV1 winding.
Zener diodes VR7, VR8 and R37 can be used for to limit the maximum LED voltage which can be predominantly caused by the leakage in the transformer.VR7,VR8 and R37 are optional and not populated in this DER.

When the Selection MOSFET (Q1) is turned off and the SR diode (D8) is conducting, the voltage on the anode of D1 rises until it is forward biased. In this condition, all the transformer energy is directed to the LED output.

When the selection MOSFET (Q1) on, the transformer secondary windings are designed such that the voltage on the anode of D1 is below the lowest working LED string voltage. Therefore D1 will remain reverse biased and all the transformer energy is directed to the CV1 output via Q1.

The set point for the CV1 output is determined by the internal code settings, CV1 voltage is monitored via a feedback signal to the VCV1 pin of InnoMux-2.

LED+ output maximum voltage is set by the internal code. In this design it has been set to the default value 80 V . Note that the actual LED+ voltage is not set by the code and it varies depending on the LED stack voltage and the drain voltage (VSENSE) on the LED driver MOSFET (Q3).

6.3.5 LED Current Control and Dimming

The maximum LED current is set by the resistor values of R17 and R18. The application is configured for 2-wire filtered PWM dimming mode. The maximum current through the LED stack is 400 mA . It is achieved at 100% Duty Cycle on both DIM1 and DIM2.

R33,R34,R35,R36,R22,R27,VR5 and VR6 are DIM1 and DIM2 external circuitries.
Other dimming options are available, such as PWM, Analog and 1-wire dimming. For details, please see latest data sheet for InnoMux-2 on the Power Integrations website.

6.3.6 Output Power Limiting

A power limit is implemented individually for each output using the internal trim code in InnoMux-2 (U1). The power delivered to any of the outputs is restricted by limiting the maximum average frequency at which an output can receive. The frequency limit is set by the trim code bits PLIM1 and PLIM2. Namely, PLIM1 bits set the frequency limit for
output CV1, and PLIM2 bits set the frequency limit for the LED output. If the frequency is exceeded for a predetermined time interval, the InnoMux-2 controller will execute autorestart.

6.3.7 Standby Mode

If the DIM2 input is held at 0 V the PSU enters "Standby Mode". The LED current is disabled and the internal LED driver circuit is powered down, reducing the controller own power consumption. Full rated power is still available at the CV1 output. The +V_LED output is maintained at a level of at least 8 V . The DIM2 input is a logic level type. If it is pulled up to above 3.3 V (5 Vmax), the LED current will be enabled.

6.3.8 Start-Up Sequence

Figure 5 - First 10 ms of Start-Up.

1. Secondary-side controllers are powered-down (asleep). The primary-side controller operates open-loop at a fixed frequency about 25 kHz . The peak current is set to approximately 75% of its maximum level. If the secondary-side does not wake up and respond, the primary-side will:
a. time out and shut down, or
b. the primary-side bias voltage will rise high enough to trigger a bias OVP shutdown.
2. The LED output is the only output to rise significantly during interval 1 . It provides power to InnoMux-2 (U1) internal secondary voltage regulator (BPS regulator), which generates the internal supply bus BPS (+5 V). Eventually the internal voltage regulator establishes 5 V at the BPS pin. U1 secondary-side controller then wakes up from its power-on-reset, and start hand-shaking with the primary controller to take over the control of InnoMux-2. Hand-shaking pulse \& SEL signals to indicate the hand shake. Also need point out what happen to secondary if hand shake failed.
3. After hand-shaking, the fixed 25 kHz switching frequency is ended, and InnoMux-2 (U1) switching according to the feedback and reference voltages on CV1 and LED. The CV1 voltage is linearly raised, while the LED voltage is maintained at the stayalive voltage ($\mathrm{V}_{\text {stayalive, }} \sim 8.0 \mathrm{~V}$) to provide input to the internal BPS regulator. While the Vcv1 is raised to the same reference percentage as the V Led, InnoMux-2 (U1) starts ramping up both of the two output voltages simultaneously ($\mathrm{V}_{\text {cvi }}$ and $\mathrm{V}_{\text {Led }}$) to their references.
4. CV1 and LED output voltages can be seen to rise simultaneously (Figure 6). At some time during interval 4, the CV1 will reach a sufficient level to power the internal BPS regulator via the VCV1 pin (U1 pin 10). The input of the BPS regulator then switches automatically to the VCV1 pin, thus reducing the power dissipation on the BPS regulator.

Figure 6 - Complete Start-Up Cycle Over Approximately 180 ms.
5. The LED current is enabled. Its level depends on the dimming configuration and the signal on the dimming input(s) (DIM1, DIM2). The LED current is controlled by the internal regulator (U1 pins 1, 3 and 4) and the external LED driver MOSFET (Q3). To reduce the power dissipation on the LED driver MOSFET (Q3), the InnoMux-2 controller (U1) maintains $\mathrm{V}_{\text {LED }}$ at a level with some minimum headroom of above the LED stack voltage. This keeps the voltage at the Vsense pins to a minimum.

7 Connection Diagram

The connection diagram on Figure 7 below shows a 2-wire filtered PWM dimming configuration. For other dimming configurations, please refer to the product datasheets.

Figure 7 - Connection Diagram

8 PCB Layout

The converter PCB layout is illustrated on Figure 8, Figure 9 and Figure 10 below. PCB copper thickness is $2 \mathrm{oz}(2.8$ mils / $70 \mu \mathrm{~m}$) was used for the PCB.
(1) FWD pin: FWD signal has large dv/dt, which can be one of the major noise source on the secondary circuit. Its PCB route should be kept away from the other signals.
(2) Ground plane: The impedance from InnoMux-2 controller's ground to ANODE terminal of secondary rectifier diode (D1) should be minimized, or separated from the power return ground. Star connection ground can be used here, to prevent the large secondary discharge current from affecting the ground level of the InnoMux2 controller.
(3) Thermal: The primary switch in InnoMux-2 IC (U1) is cooled through the exposed pad and SOURCE pin of the IC. Care should be taken that their thermal impedance to the cooling copper of the PCB is kept to a minimum. (Figure 8).

Figure 8 - Printed Circuit Layout.

Figure 9 - Printed Circuit Layout, Bottom.

Figure 10 - Printed Circuit Layout, Top.

9 Transformer（T1）\＆CMC（L2）Specification

9．1 Core Information

Core EQ27／14，Guangzhou Tongyang Electronics Part No． 066260270718044

－磁芯可按客户尺寸开模，可以开气隙。
We can open the mould or grind air gap for the ferrite core as per customer＇s requirement and size ．
Figure 11 －EQ27／14 Core．

9.2 Bobbin Information

Figure 12 - Guangzhou Tongyang Electronics - 11 Pin Bobbin - YT-2701.

9.3 Electrical Diagram

Figure 13 - Transformer Electrical Diagram.

9.4 Winding Stack Diagram

Note:
Unless stated otherwise bobbin
tums anti-clock-wise looked from
the pins' end.

Figure 14 - Transformer Build Diagram.

9.5 Transformer Electrical Specification

Parameter	Condition	Spec.
Electrical strength	1 second, 60 Hz from pins 1-6 to 7-13.	3000 VAC
Nominal Primary Inductance	Measured at $1 \mathrm{~V}_{\text {PK-PK, }} 100 \mathrm{kHz}$ switching frequency, between pin 5 and 6 , with all other windings open.	$377 \mu \mathrm{H} \pm 3 \%$
Resonant Frequency	Between pin 5 and 6, other windings open.	1,100 kHz (Min.)
Primary Leakage Inductance	Between pin 5 and 6, with all secondary 7, 9, 11 and 13 shorte	10qH (Max.)

9.7 Materials List

Item	Description
$[\mathbf{1]}$	Core: Ferroxcube Part No. EQ27/14 TY44.
[2]	Bobbin: EQ27 YT-2701
[3]	Magnet Wire: 0.45 mm ECW Gr 2.
[4]	Magnet Wire: 0.15 mm ECW Gr 2.
[5]	Magnet Wire: 0.35 mm, Triple Insulated Wire.
[6]	Magnet Wire: 0.6 mm, Triple Insulated Wire.
[8]	Barrier Tape: Polyester Film, 2.5土0.5 mil thickness, 6 mm Wide.
[9]	Varnish: MR8008B - Varnish, Insulating, Polyurethane, Transparent/Amber EMR8008B250ML Or BC-359

9.8 Transformer Construction

Layer 1\&2 Primary-1	Start at pin 6, wind 21 turns of 1 wire Item [3] in 2 layers with tight tension. Terminate at pin 5.
Insulation	Place 1 layers of tape Item [8] for insulation.
Layer 3 Primary Bias	Start at pin 2, wind 7 turns of wire Item [4] with tight tension and terminate at pin 1.
Layer 3 Screen: 1\&2	Start at pin 4 for screen 1 and start from a dummy pin for screen2.\#wind 12T of wire Item [4] from end of bias wind with tight tension. Cut screen1 winding and bury, cut screen 2 winding at the end and connect it to pin4.Take off the winding from dummy pin and bury inside the layer.Cover the buried windings with 1 layer of Item [8].
Insulation	Place 1 layer of tape Item [8] for insulation. Cut end of screen wind to leave the end buried under the tape.
$\begin{gathered} \hline \text { Layer 4\&5 } \\ \text { LED } \end{gathered}$	Start at pin 7, wind 19 turns of wire Item [5] in 2 layers with tight tension and terminate at pin 11.
Insulation	Place 1 layer of tape Item [8] for insulation.
Layer 6 CV	Start at pin 9, wind 6 turns of Item [6] in 1 layer with tight tension. Cut to leave about 5 cm and tape to mandrel bobbin
Layer 7 CV	Start at pin 9, wind 6 turns of Item [6] in 1 layer with tight tension. Cut to leave about 5 cm and tape to mandrel bobbin
Layer 8\&9 Primary-2	Start at pin 5, wind 20 turns of 1 wire Item [3] in 2 layers with tight tension. Terminate at pin 4.
Insulation	Place 2 layers of tape Item [8] for insulation.
Finish Assembly	Gap core halves to $377 \mu \mathrm{H} \pm 3 \%$ inductance. Insert cores and tape tightly together item [8]. Label "XXX.X $\mu \mathrm{H}$ " (XXX.X = measured primary inductance value in $\mu \mathrm{H}$) Varnish - Item[11].

9.9 Transformer Test

The winding measured inductance of the individual windings as well as the primary leakage inductance of the transformer are shown in the table below:

		Between Pins	Pins Shorted
Lpri $[\mu \mathrm{H}]$	376	$4-6$	
LCV $[\mu \mathrm{H}]$	8.6	$11-9$	
LLED $[\mu \mathrm{H}]$	82	$11-7$	
Llaux $[\mu \mathrm{H}]$	11.6	$1-2$	
Llkg1 $[\mu \mathrm{H}]$	9.4	$5-6$	7 and 11
Llkg2 $[\mu \mathrm{H}]$	12.2	$5-6$	9 and 11

Table 1 - Winding Inductance. All measurements are done in 100 kHz at $1 \mathrm{~V}_{\text {RMs }}$.

9.10 Winding IIlustration

Power Integrations, Inc.
www.power.com

Power Integrations, Inc.
www.power.com

Power Integrations, Inc.
www.power.com

9.11 CMC Specification

1) Electrical Diagram:

Figure 1 -Inductor Electrical Diagram.
2) Electrical Specifications:

Inductance	Pins 1-4 measured at $100 \mathrm{kHz}, 0.4 \mathrm{RMS}$.	$200 \mathrm{uH}+/-10 \%$
Primary Leakage Inductance	Pins 1-4, with 2-3 shorted	1 uH

3) Materials:

Item	Description
$[1]$	Core: GL50 T 12X6X4-C, PI Part \# 32-00315-00 BIPOLAR ELECTRONIC CO., LTD
$[2]$	Magnet Wire: \#23 AWG
$[3]$	Triple Insulated wire \#23 AWG

9.12 CMC Winding II/ustration

$|$| Start as pin 1 for item[3] and |
| :--- |
| pin 2 for item[2]. |
| Wind together 9 turns on |
| core item[1]. |
| Mark end of item[3] as pin 4 |
| and end of item[2] as pin 3. |

10 Performance

10.1 RTM Curve

RTM curve is verified in specific load points with calculating primary peak current at measured switching frequency points.

Figure 15 - Primary Current(A) vs. SW frequency at Room Temperature.

10.2 Full Load Efficiency vs. Line

Efficiency vs. Line
(DY151C1-1CV1CC 32" TV 52Wnm/82Wpk, SRTM, Fmax=100kHz, SNO1)

Figure 16 - Full Power Efficiency vs. Line Voltage at Room Temperature.

9.13 Efficiency vs. Load

The efficiency vs. load measurements are shown below. These were obtained for all combinations of:

- All (nominal)line voltages (90V, 115V, 230V, 265V);
- LED full current of 380 mA with 11 steps for each line voltage
- CV1 full current of 2A with 11 steps for each line voltage

Efficiency vs. Load

(DY151C1-1CV1CC 32" TV 52Wnm/82Wpk, SRTM, Fmax $=100 \mathrm{kHz}$, SNO1)

Figure 167 - Efficiency vs. Load for all line and $V_{\text {LED }}$ variations, Room Temperature.

9.14 Output Load Regulation

The output-voltage regulation error was measured for both CV output. The current at CV output was increased from 1% to 100% of its rating in 10 steps. The current at LED output was increased from 5% to 100% of its rating in 10 steps.

- all (nominal) line voltages

The load regulation error for the CV output is shown on Figure 18 :

Cross Regulation vs. Load

Figure 17 - VCV Output Error vs. Percentage Load, at Room Temperature.

The load regulation error for the LED output is shown on Figure 19 :

Figure 18 - ILED Output Error vs. PWM duty, at Room Temperature.

9.15 Standby Input Power ($I_{\text {LED }}=0$ A)

The converter standby power was measured for all (nominal) line voltages; with the LED output disabled, and for $0 \mathrm{~mW} \sim 300 \mathrm{~mW}$ load on the CV output. The results are shown in Figure 20 below.

Figure 19 - Standby Power Consumption vs. Line Voltage, Room Temperature.

9.16 LED Dimming

The PSU was configured for filtered PWM dimming. The value of the LED current was measured as the duty of the PWM was increased from 10% to 100% in 10 steps. The measurements were taken at nominal LED stack voltage and repeated for:

- all line voltages;
- no load or full load on CV output;

The results are presented in Figure 21 and Figure 22.

DY151C1-1CV1CC-32"TV_LED CURRENT vs. DUTY

Figure 20 - Filtered PWM Dimming(CV=NoLoad)

DY151C1-1CV1CC-32"TV_LED CURRENT vs. DUTY

(SNO2, SRTM, Fmax $=100 \mathrm{kHz}$)

Figure 22 - Filtered PWM Dimming(CV=NomLoad)

9.17 CV Load Transient Response

CV output voltage is measured at load transient from 0,5A to 4,5A.Measurment has been done at 90VAC and 265VAC with full led load and 10% duty on led load.In all cases less than 5\% voltage drop observed on CV output.

Bandwidth of the channel is 20 MHz .

Figure 23 - CV (12 V) Output - Load Transient under nominal LED load at 90VAC $\mathrm{I}_{\mathrm{CV}}=0.5 \mathrm{~A}-4.5 \mathrm{~A}$; Undershoot $548 \mathrm{mV}, 4.56 \%$; Overshoot=294.5mV,2.45\%

CH 2 : $\mathrm{V}_{\mathrm{cv}}, \mathrm{CH} 8$: Icv

Power Integrations, Inc.
www.power.com

Figure 24 - CV (12 V) Output - Load Transient under 10\% duty on LED at 90VAC $\mathrm{I}_{\mathrm{cv}}=0.5 \mathrm{~A}-4.5 \mathrm{~A}$; Undershoot $366 \mathrm{mV}, 3.05 \%$; Overshoot=259mV,2.16\%

CH2: $\mathrm{V}_{\mathrm{cv}}, \mathrm{CH} 8$: Icv

Figure 25 - CV (12 V) Output - Load Transient under nominal LED load at 265VAC ICV=0.5A-4.5A; Undershoot 539mV,4.49\%; Overshoot=342mV,2.85\%

CH2: $\mathrm{V}_{\mathrm{cv}}, \mathrm{CH} 8$: Icv

Figure 26 - CV (12 V) Output - Load Transient under 10\% duty on LED load at 265VAC ICV=0.5A-4.5A; Undershoot 314mV,2.61\%; Overshoot=271mV,2.25\%

CH2: Vcv , CH8: Icv

9.18 Switching Waveforms

9.18.1 Primary Switch Maximum Voltage

Voltages on the primary fet has been measured at 265VAC and 90VAC under nominal and peak load.

Figure 27 - Primary Switch Voltage under peak load at 265VAC

$$
\mathrm{CH} 1: \mathrm{V}_{\text {drain }}, \mathrm{CH} 7: \mathrm{I}_{\mathrm{led}}, \mathrm{CH} 8: \mathrm{I}_{\mathrm{cv}}
$$

Maximum D-S voltage across the primary switch is 585 V .

Figure 28 - Primary Switch Voltage under nominal load at 265VAC

$$
\mathrm{CH} 1: \mathrm{V}_{\text {drain }}, \mathrm{CH} 7: \mathrm{I}_{\mathrm{led}}, \mathrm{CH} 8: \mathrm{I}_{\mathrm{cv}}
$$

Maximum D-S voltage across the primary switch is 577 V .

Figure 29 - Primary Switch Voltage under peak load at 90VAC CH 1 : $\mathrm{V}_{\text {drain }}, \mathrm{CH} 7$: $\mathrm{I}_{\text {led }}, \mathrm{CH} 8: \mathrm{I}_{\mathrm{cv}}$

Maximum D-S voltage across the primary switch is 344 V .

Figure 30 - Primary Switch Voltage under nominal load at 90VAC $\mathrm{CH} 1: \mathrm{V}_{\text {drain }}, \mathrm{CH} 7$: $\mathrm{I}_{\text {led }}, \mathrm{CH} 8: \mathrm{I}_{\mathrm{cv}}$

Maximum D-S voltage across the primary switch is 333 V .

9.18.2 Primary Switching Frequency

The primary switching frequency of the converter varies depending on line and load conditions. It was measured under peak load at minimum line input of 90 VAC. The maximum switching frequency occurs at the minimum DC input (110 kHz).LED channel has its nominal current, 380 mA and CV channel has a peak current which is 4.5 A with a 40% duty and 100 Hz load step conditions.

Figure 31 - Max Primary Switching Frequency (110kHz)

9.18.3 Transformer Current Waveforms

CH1	SR Current
CH5	Primary Current
CH7	ICV1
CH8	ILED

Table 1 - Scope Channel Allocation (This Section).

Figure 32 - Transformer Winding Currents at Minimum Input Voltage.

Figure 33 - Transformer Currents - Detailed View.

9.19 Start-Up

CH 1	Drain voltage
CH 2	CV voltage
CH 3	LED voltage
CH 4	BPS voltage
CH 5	SEL GATE
CH 7	LED current
CH 8	CV current

Table 5 - Scope Channel Allocation (This Section).

9.19.1 Full Load Start-up

Line input 265 VAC, start-up delay 105 ms, start-up time 180 ms.
Figure 34 - Full Load Start-up.

9.19.2 No-Load Start-up

Line input 265 VAC, start-up delay 105 ms , start-up time 178 ms.
Figure 35 - No-load Start-up.

9.19.3 Start-up Under CV and LED Fault Conditions

CH 2	VCV
CH 3	VLED
CH 4	FWD
CH 5	CDR 1
CH 8	ILED

Table 6 - Scope Channel Allocation (This Section).
The converter was tested for start-up under two types of single fault conditions, namely:

- Short-circuit to GND at CV output;
- Short-circuit to Vled- at Vled+ output;
- Open circuit of feedbacks;

In all cases, the converter protection prevented any permanent damage to its components. The line fuse F1 remained intact. The converter went into auto restart for the duration of the fault condition. It resumed normal operation after the fault condition was removed.

Details of the start-up behavior under those fault conditions are shown in Figure 36 to Figure 51.

$\mathrm{CV}=0 \mathrm{~A}$	Faults Before Start-up							
LED=0A	CV short to GND		VLED+ short to VLED-		CV FB open		LED FB open	
	90 V	265 V						
Protect. Def.	PLIM/ Request Not Clear	PLIM/ Request Not Clear	$\begin{gathered} \text { LED Fault } \\ (\text { LED }=380 \mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \text { LED Fault } \\ & \text { LED=380mA) } \end{aligned}$	PLIM/ Request Not Clear	PLIM/ Request Not Clear	LED Fault	$\begin{aligned} & \text { LED } \\ & \text { Fault } \end{aligned}$

$\mathrm{CV}=2 \mathrm{~A}$	Faults Before Start-up							
LED $=380 \mathrm{~mA}$	CV short to GND		$\begin{aligned} & \hline \text { VLED+ short to } \\ & \text { VLED- } \\ & \hline \end{aligned}$		CV FB open		LED FB open	
	90 V	265 V						
Protect. Def.	PLIM/ Request Not Clear	OVP	LED Fault	LED Fault	PLIM/ Request Not Clear	PLIM/ Request Not Clear	LED Fault	LED Fault

Table 7 - Protection Definitions Under Fault Conditions.

9.19.3.1 Start-up Under CV Fault Conditions

Figure 36 - Start-up With CV1 Shorted to GND. Line Input 90V , CV\&LED No-Load.

Figure 37 - Start-up With CV1 Shorted to GND. Line Input 265V , CV\&LED No-Load.

Figure 38 - Start-up With CV1 Shorted to GND. Line Input 90V, CV\&LED Nominal Load.

Power Integrations, Inc.
www.power.com

Figure 39 - Start-up With CV1 Shorted to GND. Line Input 265V , CV\&LED Nominal Load.

Figure 40 - Start-up With CV FB Open. Line Input 90V, CV\&LED No Load.

$\operatorname{Max}(\mathrm{C} 3) 93.75 \mathrm{~V}$
Acquire $2 \mathrm{~s} / \mathrm{div}, 1.25 \mathrm{MS} / \mathrm{s}, 25 \mathrm{MPoints}$, Norm:Hi-Res Trigger Edge CH2F 1.70 V, Normal

CH2:CV1	CH3:VLED	CH4:FWD	CH5:CDR1	CH8:LLED
10:1	10:1	10:1	10:1	10A:1V
$5.00 \mathrm{~V} / \mathrm{div}$	$20.0 \mathrm{~V} / \mathrm{div}$	$50.0 \mathrm{~V} / \mathrm{div}$	$5.00 \mathrm{~V} / \mathrm{div}$	$100 \mathrm{~mA} / \mathrm{div}$
DC1MS 10M	DC1M ${ }^{\text {20M }}$	DC1M2 200M	DC1M8 20M	DC1M820M

Figure 41 - Start-up With CV FB Open. Line Input 265V , CV\&LED No-Load.

Figure 42 - Start-up With CV FB Open. Line Input 90V, CV\&LED Nominal Load.

Figure 43 - Start-up With CV FB Open. Line Input 265V, CV\&LED Nominal Load.

9.19.3.2 Start-up Under LED Fault Conditions

Figure 44 - Start-up With LED Output Shorted to LED Return. Line Input 90 V, CVOA, LED=380mA.

Figure 45 - Start-up With LED Output Shorted to LED Return. Line Input 265 V, CVOA, LED=380mA.

Figure 46 - Start-up With LED Output Shorted to LED Return. Line Input 90 V, CV2A, LED=380mA.

Figure 47 - Start-up With LED Output Shorted to LED Return. Line Input 265 V, CV2A, LED=380mA.

Figure 48 - Start-up With LED FB Open. Line Input 90 V, CVOA, LED=0mA.

	Max(C2) 2.065 V		Max(07)	Trigger Edge CH3F 19.8 V, Normal		
Acquire 1s/div,	2.5MS/s, 2	Points, Norm	Res			
	CH2:CV1	CH3:VLED	CH4:FWD	CH5:CDR1	CH7:VCC	CH8:LLED
	$\begin{aligned} & 10: 1 \\ & 2.00 \mathrm{~V} / \mathrm{div} \\ & \mathrm{DC} 1 \mathrm{M} \Omega 10 \mathrm{M} \end{aligned}$	$\begin{aligned} & 10: 1 \\ & 20.0 \mathrm{~V} / \mathrm{div} \\ & \text { DCiM2 20M } \end{aligned}$	$\begin{aligned} & 10: 1 \\ & 50.0 \quad \mathrm{~V} / \mathrm{div} \\ & \text { DC1M } 200 \mathrm{M} \end{aligned}$	10:1 $5.00 \mathrm{~V} / \mathrm{div}$ DC1M8 20M	$\begin{aligned} & 10: 1 \\ & 10.0 \mathrm{~V} / \mathrm{div} \\ & \text { DC1M } 20 \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { 10A:1V } \\ & 100 \mathrm{~mA} / \text { div } \\ & \text { DC1M } 20 \mathrm{M} \end{aligned}$

Figure 49 - Start-up With LED FB Open. Line Input 265 V, CVOA, LED=0mA.

Figure 50 - Start-up With LED FB Open. Line Input 90V, CV2A, LED=380mA.

Figure 51 - Start-up With LED FB Open. Line Input 265V, CV2A, LED=380mA.

9.20 Component Peak Voltages

9.20.1 SR Diode Reverse Voltage

Figure 5221 - SR (D8) Reverse Voltage Under Peak Load at 265VAC.
Ch4: V
Maximum reverse voltage across the SR Diode is 133 V .

Figure 53 - SR (D8) Reverse Voltage Under Nominal Load at 265VAC.
Ch4: $V_{S R}$, Ch7: $I_{\text {LED }}, C h 8: ~ I_{C V}$
Maximum reverse voltage across the SR Diode is 89 V .

Figure 54 - SR (D8) Reverse Voltage at Start-up at 265VAC.
Ch4: VSR , Ch7: ILED , Ch8: Icv
Maximum reverse voltage across the SR Diode is 125 V .

Figure 55 - SR (D8) Reverse Voltage under Peak Load at 90VAC.
Ch4: VSR , Ch7: Iled , Ch8: Icv
Maximum reverse voltage across the SR Diode is 60 V .

Figure 56 - SR (D8) Reverse Voltage under Nominal Load at 90VAC.
Ch4: VSR , Ch7: Iled , Ch8: Icv
Maximum reverse voltage across the SR Diode is 50 V .

Figure 57 - SR (D8) Reverse Voltage at Start-up at 90VAC.
Ch4: V

Maximum reverse voltage across the SR Diode is 51 V .

9.20.2 CV1 Selection FET Maximum Voltage

Figure 58 - CV1 Selection FET (Q1) D-S Voltage Under Peak Load at 265VAC.
Ch2: Vcv, Ch3: Vcvwinding, Ch7: Iled , Ch8: Icv

The maximum D-S voltage across the selection FET of CV1 is 18.6 V .

Figure 59 - CV1 Selection FET (Q1) D-S Voltage Under Nominal Load at 265VAC.
Ch2: VCv, Ch3: VCvwinding , Ch7: ILED , Ch8: Icv

The maximum D-S voltage across the selection FET of CV1 is 18.9 V .

Figure 60 - CV1 Selection FET (Q1) D-S Voltage at Start-up at 265VAC.

> Ch2: VCV , Ch3: VCwWinding , Ch7: I Led , Ch8: Icv

The maximum D-S voltage across the selection FET of CV1 is 30 V .

Figure 61 - CV1 Selection FET (Q1) D-S Voltage Under Peak Load at 90VAC.
Ch2: VCv, Ch3: Vcvwinding, Ch7: I Led , Ch8: Icv

The maximum D-S voltage across the selection FET of CV1 is 17.2 V .

Figure 62 - CV1 Selection FET (Q1) D-S Voltage Under Nominal Load at 90VAC.
Ch2: Vcv , Ch3: Vcwwinding, Ch7: I Led , Ch8: Icv

The maximum D-S voltage across the selection FET of CV1 is 17.5 V .

Figure 63 - CV1 Selection FET (Q1) D-S Voltage at Start-up at 90VAC.
Ch2: V_{cv}, Ch 3 : $\mathrm{V}_{\text {cwwinding }}$, Ch7: $\mathrm{I}_{\text {LED }}$, Ch8: I_{cv}

The maximum D-S voltage across the selection FET of CV1 is 26.2 V .

9.20.3 LED Rectifier Diode Maximum Reverse Voltage

Figure 6422 - Reverse Voltage on LED Diode Under Peak Load at 265 VAC.
Ch2: Vledwinding , Ch3: Vled , Ch7: Iled , Ch8: Icv , ChM1: VRRM
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 340 V .

Figure 65 - Reverse Voltage on LED Diode Under Nominal Load at 265 VAC.
Ch2: V ledwinding , Ch3: Vled , Ch7: Iled , Ch8: Icv , ChM1: Vrrm
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 304 V .

Figure 66 - Reverse Voltage on LED Diode at Start-up at 265 VAC.
Ch2: Vledwinding , Ch3: Vled , Ch7: Iled , Ch8: Icv , ChM1: VrRM
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 317 V .

Figure 67 - Reverse Voltage on LED Diode Under Peak Load at 90 VAC.
Ch2: V ledwinding , Ch3: V led , Ch7: Iled , Ch8: Icv , ChM1: VRRM
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 173 V .

Figure 68 - Reverse Voltage on LED Diode Under Nominal Load at 90 VAC.
Ch2: V ledwinding , Ch3: Vled , Ch7: Iled , Ch8: Icv , ChM1: Vrrm
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 171 V .

Figure 69 - Reverse Voltage on LED Diode at Start-up at 90 VAC.
Ch2: V ledwinding , Ch3: V led , Ch7: Iled, Ch8: Icv , ChM1: VRRM
The worst-case peak reverse voltage across the LED rectifier diode (D3) is 161 V .

9.20.4 BPP Rectifier Diode Reverse Voltage

Figure 70 - Auxillary Diode Reverse Voltage Under Peak Load at 265VAC.
Ch4: V ${ }_{\text {bPPwndng }, ~ C h 7: ~ I l e d ~, ~ C h 8: ~ I c v ~}^{\text {l }}$
Maximum reverse voltage across the Auxiliary winding diode is 117 V .

Figure $\mathbf{7 1}$ - Auxillary Diode Reverse Voltage Under Nominal Load at 265VAC.
Ch4: V ${ }_{\text {bPPWwndng }}$, Ch7: $I_{\text {Led }}$, Ch8: Icv
Maximum reverse voltage across the Auxiliary winding diode is 93 V .

Figure 72 - Auxillary Diode Reverse Voltage at Start-up at 265VAC.
Ch4: Vbppwndng, Ch7: Iled, Ch8: Icv
Maximum reverse voltage across the Auxiliary winding diode is 123 V .

Figure 73 - Auxillary Diode Reverse Voltage under Peak Load at 90VAC.

Ch4: Vbppwndng , Ch7: Iled, Ch8: Icv

Maximum reverse voltage across the Auxiliary winding diode is 66 V .

Figure 74 - Auxillary Diode Reverse Voltage under Nominal Load at 90VAC.
Ch4: V ${ }_{\text {bPpwndng }}$, Ch7: ILed, Ch8: Icv
Maximum reverse voltage across the Auxiliary winding diode is 61 V .

Figure 75 - Auxillary Diode Reverse Voltage at Start-up at 90VAC.
Ch4: V

Maximum reverse voltage across the Auxiliary winding diode is 45 V .

9.21 Brown - Out and Brown - In

The Brown In and Brown Out results were measured at full load on all outputs. The results are shown in the table below. Screenshots illustrating the tests are shown in Figure 49.

Brown-Out Threshold	Brown-In Threshold
$\left[\mathrm{V}_{\text {RMS }}\right]$	$\left[\mathrm{V}_{\text {RMS }}\right]$
63.5	73.3

Table 2 - Brown-In and Brown-Out Thresholds at Full power.

Figure 76 - Brown-Out Response at Full Power.

Figure 77 - Brown-In Response at Full Power.

9.22 Output Protections

9.22.1 CV Output Overvoltage Protection

The overvoltage protection threshold of the CV output was tested. Additional charge was injected into the output filter capacitor of the output under test until the converter went into a restart. The test was carried out at line voltages 115 V with full LED current.

In all cases of LED no-load\&full load and CV no-load\&full-load , OV protection disables the system at $13.48 \mathrm{~V}-13.52 \mathrm{~V}$ which is around 112% of nominal CV voltage .

Figure 78 - CV OVP at full LED load

Figure 79 - CV OVP no LED load

9.22.2 LED Output Overvoltage Protection

The overvoltage protection thresholds of the LED output was tested at full power on CVoutput. CDR1 gate opens at steady-state to charge the LED capacitors for triggering LED over voltage protection.

LED OVP has been triggered at 93.4 V which is 116% of LED voltage.

Figure $\mathbf{8 0}$ - LED OVP

9.23 Output Ripple Measurements

9.23.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe were utilized in order to reduce noise pick-up. Details of the probe modification are provided in Figure 59.

The probe adapter is shown in Figure 59. It includes a coaxial cable with two parallel capacitors connected to the points of measurement. The capacitors include a $0.1 \mu \mathrm{~F} /$ 100 V ceramic type and a $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ aluminum electrolytic type. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be ensured.

Figure 81 - Oscilloscope Probe Used in Ripple Measurement.

9.23.2 CV Output Ripple

9.23.2.1 Test Set-up

- 90 VAC - 265 VAC
- Output 12 V @ 24 W and LED_72 V @ 27, 36 W
- 200 MHz bandwidth in the scope, 100 nF ceramic capacitor and $10 \mu \mathrm{~F} @ 50 \mathrm{~V}$ electrolytic capacitor with sniffing connected to output pin

Figure 82 - VCV Ripple and Noise under nominal load at 90VAC.
CH 2 : $\mathrm{V}_{\mathrm{CV}}, \mathrm{CH} 7$: $\mathrm{I}_{\mathrm{LED}}, \mathrm{CH} 8$: I_{cv}

Power Integrations, Inc.
www.power.com

Figure $\mathbf{8 3}$ - VCV Ripple and Noise under nominal load at 265VAC.
CH2: Vcv, CH7: ILED , CH8: ICv

The worst case ripple and noise at the CV output of the converter was measured as 84 mV P-p at 200 MHz bandwidth at the connector output.

10 Conducted EMI

The EMI scans were carried out at full power.PE connection was not considered in the test to simulate a TV system.

The conducted emissions were more than 8 dB below the limits set by CISPR22B / EN55022B.
10.1 Line Input 115 VAC

Final Result

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mathrm{\mu V})$	Average $(\mathrm{dB} \mathrm{\mu V})$	Limit $(\mathrm{dB} \mathrm{\mu V})$	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.150000	36.56	56.00	19.44	10.000	N	ON	20.3	
0.150000	52.13	-	66.00	13.87	10.000	N	ON	20.3

Figure $\mathbf{8 4}$ - EMI Test Results at 115 V .

10.2 Line Input 230 VAC

Final Result

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V})$	Average $(\mathrm{dB} \mu \mathrm{V})$	Limit $(\mathrm{dB} \mu \mathrm{V})$	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.150000	-	43.12	56.00	12.88	10.000	N	ON	20.3
0.150000	56.83	-	66.00	9.17	10.000	N	ON	20.3
29.935000	-	41.54	50.00	8.46	10.000	N	ON	20.4
29.935000	46.57	-	60.00	13.43	10.000	N	ON	20.4
29.965000	-	41.59	50.00	8.41	10.000	N	ON	20.4
29.965000	46.44	-	60.00	13.56	10.000	N	ON	20.4

Figure $\mathbf{8 5}$ - EMI Test Results at 230 V .

11 Thermal Performance

There are no heat sinks in cooling arrangements of the assembly. Copper pours are used for the cooling of the control IC. No forced air-cooling was deployed during test. The temperatures of the hottest components in the assembly are shown in Table.

Ambient temperature is $23 \pm 2^{\circ} \mathrm{C}$.

Figure 86 - Line $=90 \mathrm{~V}$ Nominal Power - Thermal Image - Bottom\&Top Views.

PART	U1 IC	BR1 BRIDGE	VR2 SNUB TVS	SNUB RES	D1 LED DIODE	Q1 SEL FET	D8 SR DIODE	TRF CORE	TRFINDING
\mathbf{T} $\left[{ }^{\circ} \mathbf{C}\right]$	84.2	77.8	85.2	80.3	75.8	64.8	87.2	85.9	91
$\boldsymbol{\Delta T}$ $\left[{ }^{\circ} \mathbf{C}\right]$	63.2	56.8	64.2	59.3	54.8	43.8	66.2	64.9	70

Table 9 - Line = 90 V Full Power - Component Case Temperatures.

PART	U1 IC	BR1 BRIDGE	VR2 SNUB TVS	SNUB RES	D1 LED DIODE	Q1 SEL FET	D8 SR DIODE	TRF CORE WINDING	TRF
\mathbf{T} $\left[{ }^{\circ} \mathbf{C}\right]$	71	54.7	78.2	73.9	77.9	67.7	89.5	92.4	94.1
$\boldsymbol{\Delta T}$ $\left[{ }^{\circ} \mathbf{C}\right]$	50	33.7	57.2	52.9	56.9	46.7	69.5	71.4	73.1

Table 9 - Line = 265 V Full Power - Component Case Temperatures.

12 Audible Noise Performance

Figure 87 - Audible Noise at normal operation mode.
Acousic Noise (DLM8)
1CV1CC 32"TV CV=12V/2Anm/4.5Apk LED=60~72V/0.38A, SNO1, Fmax=100kHz

Figure 88 - Audible Noise at standby mode.

13 Combination Wave Surge Test

The unit was subjected to $\pm 1000 \mathrm{~V}$ differential mode and $\pm 2000 \mathrm{~V}$ common mode combination wave surge at several line phase angles with 5 strikes for each condition.

A test failure was defined as an output latch-off that needs operator intervention to recover, or a complete loss of function that is not recoverable.

13.1 Differential Mode Surge (L1 to L2), 230 VAC Input

Surge Level $\mathbf{(V)}$	Injection Location	Injection Phase (${ }^{\circ}$)	Test Result
+1000	L1 to L2	0	Pass
-1000	L1 to L2	0	Pass
+1000	L1 to L2	90	Pass
-1000	L1 to L2	90	Pass
+1000	L1 to L2	180	Pass
-1000	L1 to L2	180	Pass
+1000	L1 to L2	270	Pass
-1000	L1 to L2	270	Pass

Table 10 - Differential Mode Surge Test Result.
13.2 Common Mode Surge (L1 to PE), 230 VAC Input

Surge Level $\mathbf{(V)}$	Injection Location	Injection Phase (${ }^{\circ}$)	Test Result
+2000	L1 to PE	0	Pass
-2000	L1 to PE	0	Pass
+2000	L1 to PE	90	Pass
-2000	L1 to PE	90	Pass
+2000	L1 to PE	180	Pass
-2000	L1 to PE	180	Pass
+2000	L1 to PE	270	Pass
-2000	L1 to PE	270	Pass

Table 11 - Common Mode Surge Test Result - L1 to PE.
PE is connected to secondary GND to perform common mode test.
13.3 Common Mode Surge (L2 to PE), 230 VAC Input

Surge Level $\mathbf{(V)}$	Injection Location	Injection Phase $\mathbf{(}^{\circ}$)	Test Result
+2000	L2 to PE	0	Pass
-2000	L2 to PE	0	Pass
+2000	L2 to PE	90	Pass
-2000	L2 to PE	90	Pass
+2000	L2 to PE	180	Pass
-2000	L2 to PE	180	Pass
+2000	L2 to PE	270	Pass
-2000	L2 to PE	270	Pass

Table 12 - Common Mode Surge Test Result - L2 to PE.

PE is connected to secondary GND to perform common mode test.
13.4 10.16.4 Common Mode Surge ($L 1+L 2+P E$), 230 VAC Input

Surge Level $\mathbf{(V)}$	Injection Location	Injection Phase (${ }^{\circ}$)	Test Result
+2000	L2 to PE	0	Pass
-2000	L2 to PE	0	Pass
+2000	L2 to PE	90	Pass
-2000	L2 to PE	90	Pass
+2000	L2 to PE	180	Pass
-2000	L2 to PE	180	Pass
+2000	L2 to PE	270	Pass
-2000	L2 to PE	270	Pass

Table 13 - Common Mode Surge Test Result - L1,L2 and PE

PE is connected to secondary GND to perform common mode test.

13.5 ESD Test

The unit was tested with $\pm 15 \mathrm{kV}$ air discharge and $\pm 8 \mathrm{kV}$ contact discharge with 10 strikes for each condition at the following locations at 230VAC and 115VAC:

- VCV+
- VCV-

A test failure was defined as an output latch-off that needs operator intervention to recover, or a complete loss of function that is not recoverable.

Contact Discharge	ESD Location	Input Voltage	Test Result
+8 kV	$\mathrm{VCV}+$	115 VAC	Pass
-8 kV	$\mathrm{VCV}+$	230 VAC	Pass
+8 kV	$\mathrm{VCV}-$	115 VAC	Pass
-8 kV	$\mathrm{VCV}-$	230 VAC	Pass

Table 14 - Contact Discharge Test Result.

Air Discharge	ESD Location	Input Voltage	Test Result
+15 kV	VCV +	115 VAC	Pass
-15 kV	VCV +	230 VAC	Pass
+15 kV	VCV-	115 VAC	Pass *
-15 kV	VCV-	230 VAC	Pass

* power supply might initiate AR

Table 15 - Air Discharge Test Result.

14 Revision History

Date	Author	Revision	Description \& Changes	Reviewed
$26-$ Feb-24	YL	0.1	Draft Release.	Apps

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may be based on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperLCS, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI,
PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2022, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail:chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

GERMANY

(AC-DC/LED/Motor Control Sales) Einsteinring 24 85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales) HellwegForum 3
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@ power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg.
1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, \#19-01/05 Goldhill Plaza Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

[^0]: PATENT INFORMATION
 The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-propertylicensing/.

