

Design Example Report

Title	0.5W Non-Isolated Buck-Boost Converter using the LNK302P						
Specification	Input: 85-265 VAC Output: 0.5W, 40mA Constant current						
Application LED Driver							
Author	Power Integrations Applications Department						
Document Number	DER-92						
Date	August 11, 2005						
Revision	1.0						

Summary and Features

- Low component count (only 9 components required)
- Low Cost, light weight, compact solution
- No Opto-Coupler required
- Open loop operation
- High efficiency (~70%)
- Meets EN55022 B EMI limits with > 8 dB margin

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

Table Of Contents

1	ln [.]	ntroduction	3
2		ower Supply Specification	
3		chematic	
4		ircuit Description	
	4.1	Input EMI Filtering	
	4.2	LinkSwitch-TN	
	4.3		
	4.4	Circuit Operation	
5	P	CB Layout	
6		ill Of Materials	
7		preadsheet	
8	P6	erformance Data	10
	8.1	Efficiency	10
9	W	/aveforms	10
	9.1	Drain Voltage and Current, Normal Operation	10
	9.2	Output Current, Normal operation	11
1	0	Conducted EMI	12
1	1	Revision History	13

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.

1 Introduction

This document is an engineering report describing a 0.5 W constant current LED driver power supply utilizing a LNK302P. This power supply is intended as a LED driver that can be used in emergence exit signs and neon light replacements

The document contains the power supply specification, schematic, bill of materials, printed circuit layout, and performance data.

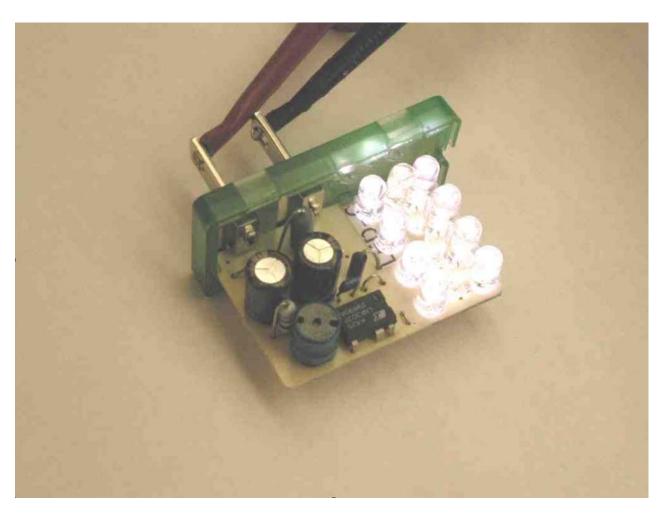


Figure 1 - Populated Circuit Board Photograph

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	85		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (230 VAC)			-		W	
Output						
Output Voltage 1	V_{OUT1}		13		V	± 5%
Output Ripple Voltage 1	$V_{RIPPLE1}$				mV	20 MHz bandwidth
Output Current 1	I_{OUT1}		40		mΑ	
Total Output Power						
Continuous Output Power	P _{OUT}		0.5		W	
Peak Output Power	P _{OUT_PEAK}		0.5		W	
Efficiency						
Full Load	η		70		%	Measured at P _{OUT} 25 °C
Environmental						
Conducted EMI		Meets CISPR22B / EN55022B				
Safety		Designed to meet IEC950, UL1950 Class II				
Surge					kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Surge					kV	100 kHz ring wave, 500 A short circuit current, differential and common mode
Ambient Temperature	T _{AMB}	0	25	50	°C	Free convection, sea level

3 Schematic

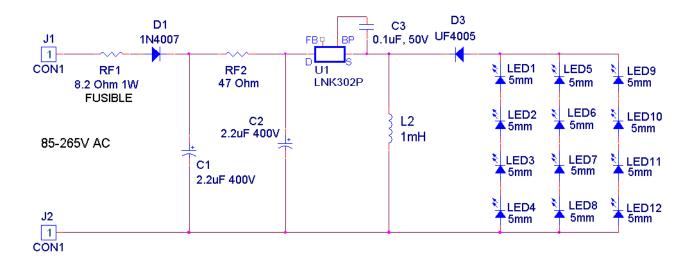


Figure 2 - Schematic

4 Circuit Description

This is a very simple circuit, which requires as few as 9 components. An additional input diode may be placed on the return leg for EMI and surge withstand capability

4.1 Input EMI Filtering

Resistors RF1, RF2 and capacitors C1 and C2 form the EMI filter. C1 C2 and RF2 are connected to form a low cost resistive π filter and provide excellent differential mode filtering and also serve as the stable DC bus voltage. Resistor RF1 is a fusible flameproof type while RF2 can be only flameproof.

4.2 LinkSwitch-TN

LNK302P is used in open loop mode for this circuit. This particular device in the *LinkSwitch-TN* family does not have the auto restart feature, and thus when the feedback pin is left open, the MOSFET switches every cycle until current limit (or duty cycle limit) is reached.

4.3 Output Rectification

Since this circuit operates strictly in the discontinuous conduction mode (DCM) a 75 nS recovery time UF4005 diode is used for output rectification. The buck boost topology also provides benefits of isolating the output from the input in case of Switch failure

4.4 Circuit Operation

This LED driver operates at 66 kHz and energy is provided to the LED's every switching cycle. Since the circuit operates in discontinuous mode, a fixed amount of energy is stored each cycle in L2, then is completely transferred to the load (i.e. the LEDs). The current in the LED is a triangular waveform, whose peak is determined by the fixed and well-controlled current limit of the LNK302. The load current is thus independent of line voltage. As such the need for output filter capacitor is completely eliminated.

5 PCB Layout

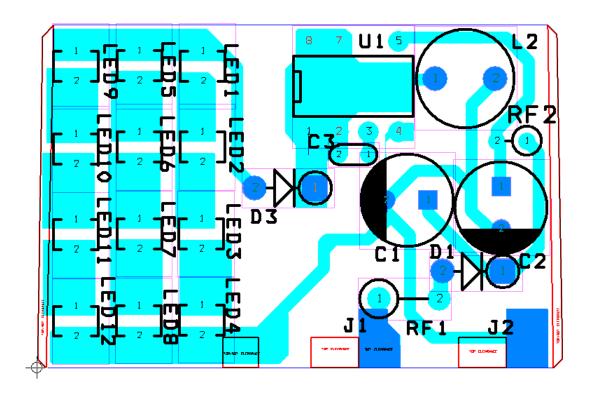


Figure 3 - Printed Circuit Layout

6 Bill Of Materials

Item	Quantity	Reference	Part	Description	Manufacturer
1	2	C1,C2	2.2 uF	400 V input capacitors	UCC
2	1	C3	0.1 uF, 50 V (ECU- S1H104KBB)	Bypass pin capacitor	Panasonic
3	1	D1	1N4007	Input rectifier diode	Diodes Inc (or Generic)
4	1	D3	UF4005	Output rectifier diode	Gen Semiconductor (or generic)
5	2	J1,J2	CON1	AC Input connector	Generic
6	12	LED1,12	5mm	Super bright White LED's	OSRAM
7	1	L2	SBC1-102-211	1 mH inductor	Tokin
8	1	RF1	8.2 Ohm 1W	1W, Fusible and Flameproof	VTM
9	1	RF2	47 Ohm, Flameproof	Flameproof	VTM
10	1	U1	LNK302P	LinkSwitch-TN	Power Integrations

Spreadsheet

ACDC_LinkSwitch-TN_BuckBoost_042605; Rev.2.0; Copyright Power Integrations 2004	INDIT	INFO	OUTPUT	LINIT	LinkSwitch-TN_BuckBoost_Rev2-0.xls: LinkSwitch-TN Design Spreadsheet
	INPUI	INFO	001701	UNII	i ·
INPUT VARIABLES					Customer
VACMIN	85				Minimum AC Input Voltage
VACMAX	265	1		Volts	Maximum AC Input Voltage
FL	50)		Hertz	Line Frequency
VO	12.50)		Volts	Output Voltage
IO	0.035	;		Amps	Output Current
					Overall Efficiency Estimate (Adjust to match Calculated, or enter
EFFICIENCY (User Estimate)	0.75	;			Measured Efficiency)
EFFICIENCY (Calculated Estimate)			0.65		Calculated % Efficiency Estimate
CIN	4.40)	4.40	uF	Input Filter Capacitor
Input Stage Resistance	8.2		8.2	ohms	Input Stage Resistance, Fuse & Filtering
Ambient Temperature			50	dea C	Operating Ambient Temperature (deg Celcius)
Input Rectification Type	Н		Н		Choose H for Half Wave Rectifier and F for Full Wave Rectification
			-		
DC INPUT VARIABLES					
VMIN			99.7	Volte	Minimum DC Bus Voltage
VMAX			374.8		Maximum DC Bus Voltage
VIMAX			3/4.6	VOILS	Maximum DC Bus Voltage
LINKSWITCH-TN					
LINKSWITCH-TN			LNK302		Selected LinkSwitch-TN
LIMRSWITCH-IN ILIMIT			0.136		Typical Current Limit
					Minimum Current Limit
ILIMIT_MIN			0.136	1 -	
ILIMIT_MAX			0.146	1 -	Maximum Current Limit
FSMIN			66000		Minimum Switching Frequency
VDS			12.0		Maximum On-State Drain To Source Voltage drop
PLOSS_LNK	-		0.20	Watts	Estimated LinkSwitch-TN losses
DIODE					
VD			0.70		Freewheeling Diode Forward Voltage Drop
VRR			600	Volts	Recommended PIV rating of Freewheeling Diode
lF			1	Amps	Recommended Diode Continuous Current Rating
TRR			75	ns	Recommended Reverse Recovery Time
Diode Recommendation			UF4005		Suggested Freewheeling Diode
OUTPUT INDUCTOR					
OUTPUT INDUCTOR					
					Required value of Inductance to deliver Output Power (Includes device
L_TYP			989.2	uH	and inductor tolerances) Choose next higher standard available value
L			1000	uH	Output Inductor, Recommended Standard Value
 L_R			2.0		DC Resistance of Inductor
OPERATING MODE			DCM		Discontinuous Conduction Mode (at VMIN)
KL TOL			1.15		
K LOSS			0.833		
ILRMS			0.06		Estimated RMS inductor current (at VMAX)

8 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

8.1 Efficiency

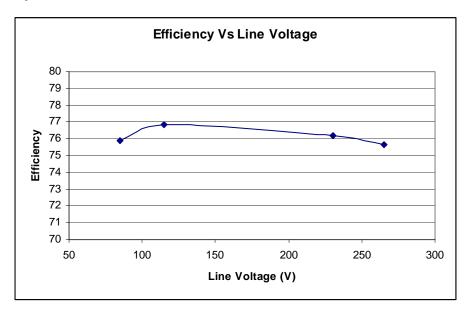


Figure 4 - Efficiency Vs Line Voltage

9 Waveforms

9.1 Drain Voltage and Current, Normal Operation

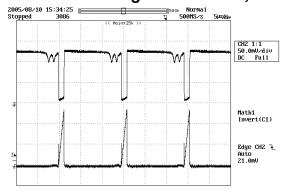


Figure 5 - 85 VAC, Full Load. Upper: I_{DRAIN} , 50 mA / div Lower: V_{DRAIN} , 50 V, 5 μs / div

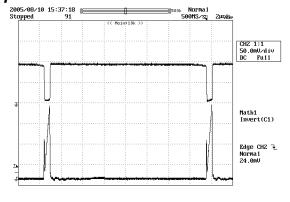
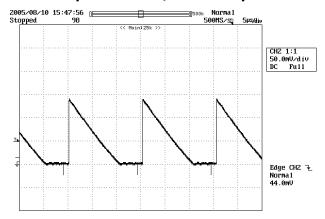



Figure 6 - 265 VAC, Full Load Upper: I_{DRAIN}, 50 mA / div Lower: V_{DRAIN}, 200 V / div, 2 μs / div

9.2 Output Current, Normal operation

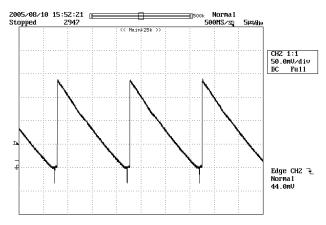
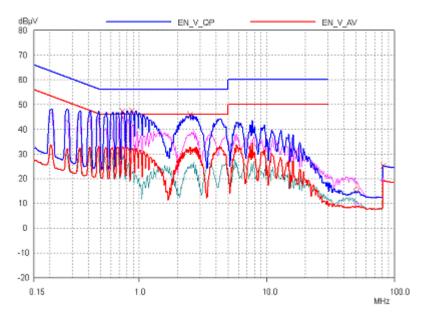



Figure 7 - 115VAC 50 ms / div. 5 μ s / div

Figure 8 - Start-up Profile, 230 VAC 50 ms / div. 2 μs / div

10 Conducted EMI

Figure 9 - Conducted EMI, Maximum Steady State Load, foreground shows 230 VAC, background shows 115 VAC, 60 Hz, and EN55022 B Limits.

11 Revision History

Date August 11, 2005	Author SK	Revision 1.0	Description & changes First Draft	Reviewed AM / VC

For the latest updates, visit our website: www.powerint.com

Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch and EcoSmart are registered trademarks of Power Integrations. PI Expert and PI FACTS are trademarks of Power Integrations. © Copyright 2005 Power Integrations.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200

Customer Service:

Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com

CHINA (SHANGHAI)

Rm 807-808A, Pacheer

Commercial Centre,

Phone:

555 Nanjing West Rd.

Shanghai, P.R.C. 200041

+86-21-6215-5548

+86-21-6215-2468

e-mail: chinasales@powerint.com

GERMANY

Rueckerstrasse 3 D-80336, Muenchen Germany

Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: eurosales@powerint.com

INDIA (TECHNICAL SUPPORT)

CHINA (SHENZHEN)

Room 2206-2207, Block A, Elec. Sci. Tech. Bldg 2070 Shennan Zhong Rd Shenzhen, Guangdong, China, 518031

Phone: +86-755-8379-3243 Fax: +86-755-8379-5828

e-mail: chinasales@powerint.com

261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India 560080
Phone: +91-80-5113-8020
Fax: +91-80-5113-8023
e-mail: indiasales@powerint.com

ITALY

Via Vittorio Veneto 12 20091 Bresso MI Italy

nary

Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com

JAPAN

1st Bldg Shin-Yokohama, 2-12-20 Kohoku-ku, Yokohama-shi, Kanagawa ken, Japan 222-0033 Phone: +81-45-471-1021

Fax: +81-45-471-3717

e-mail:

KOREA

Phone:

e-mail:

Phone:

Fax:

SINGAPORE

51 Newton Road,

Singapore, 308900

Fax:

RM 602, 6FL

japansales@powerint.com

Korea City Air Terminal B/D,

Samsung-Dong, Kangnam-Gu,

+82-2-2016-6610

+82-2-2016-6630

+65-6358-2160

+65-6358-2015

Seoul, 135-728, Korea

koreasales@powerint.com

#15-08/10 Goldhill Plaza,

TAIWAN

5F-1, No. 316, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550

e-mail:

taiwansales@powerint.com

UK (EUROPE & AFRICA HEADQUARTERS)

1st Floor, St. James's House East Street, Fernham Surrey, GU9 7TJ United Kingdom

Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX

World Wide +1-408-414-9760

e-mail: singaporesales@powerint.com