power integrations"

Design Example Report

$\left.\begin{array}{|l|l|}\hline \text { Title } & \begin{array}{l}\text { 45 W Mu/ti Output F/yback Converter with } \\ \text { Two CV and One CC Using InnoMux } \\ \text { IMX111U and InnoSwitch }\end{array} \\ \text { INM-MX } \\ \text { INN346C }\end{array}\right]$

Summary and Features

Unique single-stage conversion, multiple-output, Flyback architecture enabling:

- High efficiency across the universal line range
- Energy Star 8.0 efficiency compliance
- High-accuracy, independently regulated $5 \mathrm{~V} / 1 \mathrm{~A}$ and $12 \mathrm{~V} / 1.25 \mathrm{~A}$ CV outputs with extremely fast load transient response of 150μ s and 250μ s respectively.
- One CC LED output with wide string voltage range of 30 V to 50 V suitable for wide range of television applications
- Configurable for
- Analog dimming mode
- Straight PWM dimming mode
- Filtered PWM dimming mode and
- Hybrid dimming mode.

InnoSwitch3-MX and InnoMux form an industry first AC/DC chipset with isolated, safetyrated integrated feedback. In addition there is built-in synchronous rectification for >90\% efficiency at nominal AC input.

The control chipset incorporates isolated feedback and communication channels while implementing all the benefits of secondary-side control with the simplicity of primary-side regulation.

There are a few important safety features such as

- Output overvoltage protection (OVP), which eliminates the need for a fault protection optocoupler
- Accurate thermal protection with hysteretic shutdown
- Input voltage monitor with accurate brown-in/brown-out and overvoltage protection

The new architecture goals are to achieve tight cross regulation across multiple outputs and high overall efficiency while simplifying the overall system by removing conventional DC-DC converter post-regulation stages. This single-stage converterreduces board size significantly and shrinks part count about 50\% compared to conventional converters that require extra converters. In addition to this high level of integration, benefits extend to InnoSwitch protection features such as input and output over/under-voltage and shortcircuit protection.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-propertylicensing/.

Table of Contents

Summary and Features 2
1 Introduction 6
2 Power Supply Specification 11
3 Schematic 12
4 Circuit Description 14
4.1 Input EMI Filtering 14
4.2 Primary-Side 14
4.2.1 Primary-Side Controller Power Source and OVP Protection 14
4.2.2 Primary-Side OVP, Brown-In and Brown-Out Protection 14
4.2.3 Primary Peak Current Limit 15
4.3 Secondary-Side 15
4.3.1 Primary to Secondary-side Communication 15
4.3.2 SR FET Control 15
4.3.3 InnoSwitch3-MX to InnoMux Communication 15
4.3.4 InnoMux power sources 16
4.3.5 High Side MOSFET Driver for Q2 or Q4 16
4.3.6 Output Control 16
4.3.7 LED Current Control and Dimming 17
4.3.8 Output Power Limiting 18
4.3.9 Standby Mode 18
4.3.10 Start-Up Process 19
5 DER-635 Connection Diagram 22
6 PCB Layout 23
7 Bill of Materials 25
9 PI Expert Design Tool output 27
10 Transformer (T1) Specification 31
10.1 Core Information 31
10.2 Bobbin Information 32
10.3 Electrical Diagram 33
10.4 Winding Stack Diagram 34
10.5 Electrical Specifications 34
10.6 Materials List 35
10.7 Construction 36
10.8 Winding Illustration 37
10.9 Test 45
11 Performance Data 46
11.1 Full Load Efficiency vs. Line. 46
11.2 Efficiency vs. Load for all Lines 47
11.3 Line Regulation at Full Load 48
11.45 V Output Load Regulation 49
11.512 V Output Load Regulation 50
11.6 Input Power with Minimum Load (5 V @ 0 A, 12 V @ 0 A, 40 V @ 0 A) 51
11.7 LED Dimming 52
11.7.1 Analog Dimming 52
11.7.2 PWM Dimming 53
12 Waveforms 57
12.1 Load Transient Response 57
12.1.1 5 V Load transient. 57
12.1.2 12 V Load Transient 58
12.2 Switching Waveforms 59
12.2.1 Maximum Voltage on the Primary Transistor 59
12.2.2 Primary Frequency 60
12.2.3 Currents Waveform 61
12.3 Start-Up Waveform 63
12.3.1 Starting-up with Full Load 63
12.3.2 Starting-up with No-Load 64
12.3.3 Starting-up with Shorted/No FB 5 V Output 65
12.3.4 Starting-up with Shorted/No FB 12V Output 66
12.3.5 Starting-up with Shorted/No FB LED Output 67
12.3.6 5 V, 12 V,LED and SR FET/Diode Voltage Waveforms 68
12.4 Brown-In and Brown-Out 73
12.4.1 Response at $90 \mathrm{~V}-0 \mathrm{~V}-90 \mathrm{~V}$ 73
12.4.2 Response at 265 V - 0 V - 265 V 76
12.4.3 Response at $0 \mathrm{~V}-450 \mathrm{VDC}-0 \mathrm{~V}$ 79
12.5 Overvoltage and Over Current Protections 80
12.5.1 CV1 OV OC Protections 80
12.5.2 CV2 OV OC Protections. 82
12.5.3 LED OV OC Protections. 84
12.6 Output Ripple Measurements 86
12.6.1 Ripple Measurement Technique 86
12.6.2 5 V Output 87
12.6.3 12 V output 88
12.7 LED output 89
13 Conductive EMI 90
13.1 115 VAC. 90
13.2230 VAC. 91
14 ESD Test 92
14.1 ESD contact pulse on the PSU GND 93
14.2 ESD Air discharge pulse on the PSU GND 93
15 Surge Test 94
16 Thermal Performance 95
16.1 Cooling Assembly 95
16.2 Thermal Set-Up 98
16.390 VAC 99
16.4 115 VAC 100
$16.5 \quad 230$ VAC 101
16.6 265 VAC 102

17 Revision History ... 103

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a PSU for an LED TV. This Switch Mode Power Supply (SMPS), utilizes the InnoSwitch3-MX and InnoMux from the InnoSwitch family. It has 5 V / 1 A and $12 \mathrm{~V} / 1.25 \mathrm{~A}$ outputs and a 25 W output providing power to one CC driver intended for the LED backlight in the TV panel. The total current through the LED strings is controlled from 0 mA to 650 mA by an analog signal (ADIM) with a full scale of 1.5 V . The total maximum power output is 45 W , and the input voltage range is 90 VAC to 265 VAC.

The new architecture uses a multiplexed system with only one transformer as shown in Figure 1. For each switching cycle, the energy stored in the transformer during the primary conduction interval is delivered to only one of the converter's main outputs (CV1, CV2 or LED). Leveraging only a single magnetic component, the controller directs the energy flow as needed to all outputs based on respective loading requirements, thus keeping each output accurately controlled. This multiplexing is achieved by gating the steering FET Q2 or Q4 appropriately. If the energy pulse needs to be delivered to the CV1 output, Q2 is turned ON prior to the end of the primary conduction interval. Similarly, for CV2, the Q4 steering FET is used; otherwise if Q1 and Q4 are held OFF, the energy is delivered to the LED output via the rectification diode D3.

Figure 1 - DER-635 High Level Schematic.

The FB pins sense the output voltage and if needed (i.e. the voltage of one of the outputs is too low), the InnoMux IC sets the request pin to get one more pulse from the InnoSwitch3-MX IC. Every pulse given by the InnoSwitch3-MX IC is followed by an acknowledge pulse to the InnoMux IC. After that, the pulse energy is transferred to the secondary side and the InnoMux IC can adjust the energy setting as explained above. This method enables pulse-by-pulse regulation resulting in quick response and great cross regulation. For the described multiplexing algorithm to work correctly, it is essential that the transformer turns ratios are chosen such that the minimum LED output voltage reflected to the primary of the transformer is greater than the CV output voltage reflected to the transformer primary. This technique achieves cross regulation within a fraction of 1% while significantly improving system efficiency when compared to conventional post-regulation architectures. The new architecture supports multiple outputs driving both constant current and constant voltage loads, enabling the design of a single switch-mode power conversion stage that powers logic circuitry, USB ports, audio channels, and LED strings simultaneously.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 2 - PCB, Top View.

Figure 3 - PCB, Bottom View.

Figure 4 - PCB assembly, Top View.

Figure 5 - PCB assembly, Bottom View.

Figure 6 - Cooling Assembly, Top View.

Figure 7 - Cooling Assembly, Bottom View.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
Input Voltage Frequency	$\begin{gathered} \mathbf{V}_{\text {IN }} \\ \mathbf{f}_{\text {LINE }} \end{gathered}$	$\begin{aligned} & 90 \\ & 47 \end{aligned}$	50/60	$\begin{gathered} 265 \\ 64 \\ \hline \end{gathered}$	$\begin{gathered} \text { VAC } \\ \mathrm{Hz} \end{gathered}$	3 Wire Input.
Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 Output Voltage 3 Output Ripple Current 3 Output Current 3 Total Output Power Continuous Output Power	$V_{\text {out1 }}$ $\mathbf{V}_{\text {RIPPLE1 }}$ $\mathrm{I}_{\text {out1 }}$ $V_{\text {OUT2 }}$ $\mathbf{V}_{\text {RIPPLE2 }}$ $\mathrm{I}_{\text {OUT2 }}$ $V_{\text {out3 }}$ $\mathrm{I}_{\text {RIPPLE }}$ $\mathbf{I}_{\text {оит }}$ Pout	$\begin{gathered} 4.75 \\ 0 \\ 11.4 \\ 0 \\ 0 \\ 30 \\ 0 \end{gathered}$	5 12 40 0.6	$\begin{gathered} 5.25 \\ 50 \\ 1 \\ 12.6 \\ 100 \\ 1.25 \\ 50 \\ 60 \\ 0.65 \\ \\ 45 \\ \hline \end{gathered}$	V mV A V mV A V mA W	$\pm 5 \% \text {. }$ 20 MHz Bandwidth. $\pm 5 \% \text {. }$ 20 MHz Bandwidth. 20 MHz Bandwidth.
Efficiency Full Load No-Load Input Power	η	87		0.27	$\begin{aligned} & \text { \% } \\ & \text { W } \end{aligned}$	Measured at $110 / 230 \mathrm{VAC}, \mathrm{Pout}^{2} 5^{\circ} \mathrm{C}$. Measured at 230 VAC $25^{\circ} \mathrm{C}, 5 \mathrm{~V} 20 \mathrm{~mA}$, 11 Pin Pulled Low.
Environmental Conducted EMI Safety		Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II				
Surge Common Mode Ring Wave		4		6	kV	100 kHz Ring Wave, 12Ω Common Mode.
Surge Combination Wave				1	kV	Combination Wave, 2Ω Differential Mode.
ESD		$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$		$\begin{gathered} \pm 15 \\ \pm 8 \end{gathered}$	kV	Air Discharge. Contact Discharge.
Ambient Temperature	T ${ }_{\text {AMB }}$	0		60	${ }^{\circ} \mathrm{C}$	Free Convection, Sea Level.

Table 1 - Power Supply Specification.

3 Schematic

Figure 8 - Schematic.

4 Circuit Description

4.1 Input EMI Filtering

A two-stage EMI filter is used on the line AC input, C17/L1 for lower frequencies and L4 for high frequencies. Mainly common mode noise is suppressed by the input filter, but useful suppression of differential noise is also achieved. These measures along with the Y capacitor C6 and screen windings in the transformer keep the conducted emissions below the specification limits.

The bulk storage capacitor C3 provides DC voltage smoothing after the bridge rectifier BR1. VDR1 provides protection against differential voltage surges, andF1 protects the system from any kind of failure.

4.2 Primary-Side

See data sheet for InnoSwitch3-MX operation details
The transformer primary is connected between the rectified DC bus (VIN_DC_TX) and the drain of an integrated power MOSFET within the InnoSwitch3-MX (U2 pin 24). Primary current is returned to the bulk capacitor (C3) via the source tab of U2 (pin 16).

A low cost RCD clamp, formed by D2, R1, R2 and C18, limits the peak drain voltage due to the effects of transformer leakage inductance and output trace inductance.

4.2.1 Primary-Side Controller Power Source and OVP Protection

The primary-side IC is self-starting, using an internal high-voltage current source to charge the BPP pin capacitor C2, when AC is first applied. During normal operation the primary side of the controller is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding which is rectified and filtered using diode D1 and capacitor C1, and fed into the BPP pin via a current limiting resistor R14.

4.2.2 Primary-Side OVP, Brown-In and Brown-Out Protection

The primary-side output overvoltage protection is obtained using Zener diode D8. In the event of an uncontrolled overvoltage at the output, the increased voltage at the bias winding causes the zener diode D8 to conduct and trigger the OVP protection in the primary-side controller.

Resistor R16 and R11 provide line voltage sensing to provide controlled brown-in/out thresholds. These are set to approximately 75 VAC and 65 VAC respectively. At approximately 320 VAC, the current through these resistors exceeds the over overvoltage threshold, which results in the disabling of U 2 .

4.2.3 Primary Peak Current Limit

Capacitor C 2 is $0.47 \mu \mathrm{~F}$ which sets the primary-side controller peak current to 'Standard' i.e. 2.2 A.

4.3 Secondary-Side

See latest data sheet for InnoMux operation details
The secondary-side of the InnoSwitch3-MX (U2) is powered by the BP pin of the InnoMux IC (U1 pin 15) and decoupled by C7.

4.3.1 Primary to Secondary-side Communication

The secondary-side of the InnoSwitch3-MX (U2) requests the primary-side to initiate a switching cycle via the FluxLink, a galvanically isolated control channel. This occurs when the InnoMux (U1) raises the REQ pin (U2 pin 1) to the appropriate level.

4.3.2 Synchronous Rectifier (SR) FET Control

The gate of the SR FET (Q1) is turned on based on the winding voltage sensed via R5 and the FW pin (U2 pin 9). In continuous conduction mode operation, the SR FET (Q1) is turned off just prior to the secondary-side controller requesting a new switching cycle from the primary. In discontinuous current mode (DCM), the SR FET (Q1) is turned off when the voltage drop across the Q1 falls below a threshold $\left(\mathrm{V}_{\mathrm{SR}(\mathrm{TH})}\right)$. Secondary-side control of the primary-side MOSFET ensures that the primary-side power MOSFET and SR FET are never turned on simultaneously. The SR FET gate drive signal (U2 pin 7) has an amplitude of 5 V . Consequently, a logic level MOSFET must be used as a SR.

4.3.3 InnoSwitch3-MX to InnoMux Communication

Communication between InnoSwitch3-MX (U2) and InnoMux (U1) is executed through the following:

REQ (request) pin - this is an analog multi-level input with the following thresholds:

- $\quad<0.3 \mathrm{~V}$ - InnoMux is in reset
- $0.3 \mathrm{~V}-0.61 \mathrm{~V}-$ InnoMux is in idle ring measurement window mode
- $0.61 \mathrm{~V}-1.22 \mathrm{~V}-$ no pulse requested, but has control
- $1.22 \mathrm{~V}-2.44 \mathrm{~V}$ - pulse requested
- $>2.44 \mathrm{~V}$ - error, output over-voltage. Primary will latched off

ACK (acknowledge) pin - On recognition of the switching cycle request from the InnoMux IC (U1), the InnoSwitch3-MX (U2) secondary side sends an acknowledge pulse to the InnoMux IC (U1). This is a digital signal.

The SR pin is used to drive the SR FET and informs the InnoMux IC (U1) when the transformer is delivering energy to the secondary circuit.

FWC (forward) pin - this is an indication of the total secondary discharge time. This is a digital signal from the InnoSwitch3-MX IC (U2) to the InnoMux IC (U1). Similar to the SR signal, this signal indicates the discharge time more completely, as the SR may be turned off early.

4.3.4 InnoMux power sources

See latest data sheet for InnoMux operation details

The InnoMux secondary-side control IC is powered by +V_LED during start-up via R47 and C36 (optional extra ESD suppression) and VLED (U1 pin 23). An internal regulator reduces this to 5 V and outputs it on BP (U1 pin15). C11 provides BP5V decoupling for U1. The BP pin output powers the secondary-side controller of the InnoSwitch3-MX IC.

Once the voltage on VCV2 (U1 pin 21) reaches $\mathrm{VCV} 2_{\text {min }}(5.8 \mathrm{~V}$ to 8.0 V) the regulator input is switched from VLED to VCV2 to conserve power. VLED may be up to 100 V whereas VCV2 is set to 12 V , the less voltage dropped, the lower the power loss. Resistor R49 and C30 provide optional extra ESD suppression.

4.3.5 High Side MOSFET Driver for Q2 or Q4

The gate drive to the selection MOSFETs Q2 and Q4 provides a 5 V drive so a logic level MOSFET must be used. Capacitors C4 and C33 are charged up to the level of +V_CV1, 5 V and +V _CV2, 5 V respectively, resulting in the capacitors being raised by 5 V , the BP level, to generate the 5 V gate drive pulse to the steering MOSFETs.

To allow visibility of the idle ring to the FW pin, Q2 is held on after a CV1/2/VLED discharge cycle to permit Quasi-resonant Switching when in DCM mode. During this time the InnoMux IC will send a REQ for the next pulse. When an ACK is received, Q2 is turned off.

4.3.6 Output Control

Output rectification for the 5 V output is provided by the SR FET (Q1) and the CV1 selection MOSFET (Q2). Very low ESR capacitors, C10 and C25, provide filtering, and inductor L2 and capacitors C26 and C28 form a second-stage filter that significantly attenuates the high frequency ripple and noise at the 5 V output.

Output rectification for the 12 V output is provided by the SR FET (Q1) and the CV2 selection MOSFET (Q4) and CV2 diode (D5). Very low ESR capacitor, C13, provide filtering, and inductor L3 and capacitors C35 and C34 form a second-stage filter that significantly attenuates the high frequency ripple and noise at the 12 V output.

Output rectification for the LED output is provided by SR FET (Q1) and diode (D3). Very low ESR capacitors, C14 and C15, provide energy storage and filtering at the LED output.

The RC snubber network comprising R13 and C9 for D3 damps high-frequency ringing across the diode, which results from leakage inductance of the transformer windings and the secondary's trace inductances.

Zener diode D4 is used as a voltage clamp for the transformer CV1 winding while the primary MOSFET is ON and Q1, Q2 and Q4 are turned off, and D5, D3 are reverse biased. In this condition, the secondary windings are floating with respect to GND. Without D4, the voltage on Q2 drain could be too high due to transformer winding capacitance interactions.

When the selection MOSFET (Q2) and the SR FET (Q1) are turned on, the transformer secondary windings are designed such that the voltage on the anode of D3 or D5 is below the lowest working LED string voltage and 12 V respectively. Therefore D3 and D5 will remain reverse biased and all the transformer energy is directed to the CV1 output via Q1.

When the Selection MOSFET (Q2) is turned off and the Selection MOSFET (Q4) and SR FET (Q1) is turned on, the voltage on the anode of D3 is below the lowest working LED string voltage, keeping the diode reverse biased. In this condition all the transformer energy is directed to the 12 V output.

When the Selection MOSFETs (Q2 and Q4) are turned off, and the SR FET (Q2) is turned on, the voltage on the anode of D3 rises until it is forward biased. In this condition, all the transformer energy is directed to the LED output.
+V_CV1 output voltage is set by R35 and R10 to FB1 (U1 pin 19). Loop compensation is provided by R9 and C27 due to the inclusion of L2.
+V _CV2 output voltage is set by R41 and R42 to FB2 (U1 pin 20). Loop compensation is provided by R44 and C38 due to the inclusion of L3.
+V LED output overvoltage limit is set by R7 and R8 to FB3 (U1 pin 22). For DER-635 it has been set to 55 V .

Note: The actual +V_LED voltage is not set by these resistors; it is set by the voltage drop across the LED drivers ICC1-4, which is dependent on LED string current.

4.3.7 LED Current Control and Dimming

The LED current per driver is set by R3 on IS (U1 pin 3) plus, for this application which is configured for analog dimming, the voltage on ADIM (U1 pin 5). The resistance on the IS pin sets the maximum LED current per driver at the maximum ADIM voltage of 1.5 V . DER-635 has been set up for 650 mA total through 4 drivers (162 mA per driver) with 1.5 V on ADIM.

Other dimming options are available, such as PWM, Sequenced PWM and combinations of Analog and PWM. It is simple to re-configure DER-635 to another dimming method. See latest data sheet for InnoMux operation details.

4.3.8 Output Power Limits

The maximum power delivered to each output of the converter is limited by the maximum frequency at which this output can receive pulses of energy from the transformer primary. These limits are set by the values of the components connected to the PLIM1 and the PLIM2 pin. Four discrete protection levels are available for each output. (For details, see Table 3 and Table 4 in the InnoMUX datasheets.). The power limits on the CV1 output and the LED output are set by the values of resistors R4 and R40 respectively (Figure 8). The power limit on the CV2 output is set by the presence or the absence of capacitors between pins PLIM1 and PWM2 and GND (C45 and C46 in Figure 8). The controller implements auto-restart sequence if the maximum frequency on any output exceeds the set maximum value for a predetermined time interval.

4.3.9 Standby Mode

The LED-EN pin is held at GND by R19, so the InnoMux IC is in 'Standby Mode'. Here, the LED driver circuit is powered down, reducing the InnoMux power requirement and the +V_LED output is maintained at a level of at least 15 V . With a standby load of 100 mW on +V_CV1, a standby power at 230 VAC of under 300 mW can be realized. If the STBY pin rises too high (3.3 V to 5 V), the LED would be activated and would enter normal run mode.

While in Standby Mode, full rated power (5 W) is still available on the +V_CV1 output and full rated power (15 W) on the +V_CV2 output.

4.3.10 Start-Up Process

Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 8
Pri FET Vds [V]	CV1 5V	Output [V]	V led Output	[V]	BP5V [V]	U1/2 REQ pin $[V]$
U1/2 ACK	LED Output					
pin [V]	Current [A]					

Figure 9 - First 10 ms of Start-Up.

1. Secondary-side controllers are un-powered or initializing, so the primary-side controller switches without feedback information at a default rate of about 25 kHz , and peak current is set to approximately 75\% of the maximum level. If the secondary side is unresponsive, the primary side will time out and shut down, or the primaryside bias voltage will rise enough to trigger a bias OVP shutdown.
2. The LED output is the only output to rise significantly during period [1]. Eventually it will rise to a level where the InnoMux (U1) internal series regulator can establish 5 V on BP5V. At this point, U1 is drawing power only from the LED output via the VLED pin (pin 23). U2 is powered by U1 via the BP pin (U 1 pin15). U1 and U2 secondaryside controllers then initialize, and U1 raises the REQ pin (U1 pin 10) to request a pulse from the primary-side controller ($\sim 1.7 \mathrm{~V}$).
3. When the InnoSwitch3-MX secondary-side recognizes the signal, it requests a pulse from the primary side and outputs an acknowledge pulse on the ACK pin (U2 pin 4). When the InnoMux IC (U2) recognizes the ACK signal, it drops the REQ pin to the 'No Pulse Request' level ($\sim 0.9 \mathrm{~V}$). The InnoMux IC (U2) then uses Q2 or Q4 to direct a proportion of the flyback pulses to the CV1 or CV2 respectively and the rest to the LED output.
4. CV1, CV2, and LED output voltages can be seen to rise somewhat together. At some time during period 4, the CV2 will reach a sufficient level to power U1 and U2 via the VCV2 pin (U1 pin 21). The U2 regulator will automatically switch to drawing power only via the VCV2 pin, which is a more efficient source.

Figure $1 \mathbf{0}$ - Complete Start-Up Cycle Over Approximately 230 ms.
5. As the LED output voltage rises, a point will be reached when the forward voltage drop of the LED strings will be exceeded, causing the voltage across the LED drivers (U2 pins 1, 2, 27, and 28) to rise. This is detected by the InnoMux controller, and the drivers are turned on, in a sequence, to determine how many parallel LED strings are attached (always all four in DER-635 which has only one LED string - shorting all these pins). If in standby, this causes the LEDs to flash very briefly. In normal operating mode, the LED current through each string is regulated to the level set by the voltage on the ADIM pin (U1 pin 5).

5 DER-635 Connection Diagram

Figure 11 - DER-635 Connection Diagram.

6 PCB Layout

PCB copper thickness is 2 oz (2.8 mils / $70 \mu \mathrm{~m}$) unless otherwise stated
To minimize crosstalk between the outputs of the converter, it is advisable to minimize the length of the connection between the negative terminals of C10 and C25 to the source of SR (Q1). The same applies to the connection from the negative terminals of C14 and C15 or C13 to the source of SR (Q1). The three AC paths to the SR source should be kept separate.

Ideally the connection between the GND pins of U1 and U2 should not be shared with any AC ripple current in the output filter stages. This is important for achieving accurate synchronous rectification.

The primary switch in InnoSwitch3-MX IC is cooled through the SOURCE pin (the paddle) of the IC. Care should be taken that the thermal impedance between the paddle and the cooling copper of the PCB is kept to a minimum. For best results the cooling copper pour should flair out as rapidly as possible away from the solder joint.

Figure 12 - Printed Circuit Layout.

Figure 13 - Printed Circuit Layout, Bottom.

Figure 14 - Printed Circuit Layout, Top.

7 Bill of Materials

The total number of items in DER-635 is 54 with a total of 78 parts.

Item	Ref Des	Qty	Description	Mfg Part Number	Mfg
1	BR1	,	RECT BRIDGE, GP, $800 \mathrm{~V}, 4 \mathrm{~A}, \mathrm{Z4}$-D	Z4DGP408L-HF	Comchip
2	C1	1	$22 \mu \mathrm{~F}, 25 \mathrm{~V}$, Ceramic, X5R, 1206	CL31A226KAHNNNE	Murata
3	C10 C25	2	$1000 \mu \mathrm{~F}, 20 \%$, 6.3 V , AI Organic Polymer, Gen. Purpose, 2000 Hrs @ $105^{\circ} \mathrm{C}$, $(8 \times 8 \mathrm{~mm})$	RL80J102MDN1KX	Nichicon
4	C11	1	2.2 FF, 10 V, Ceramic, X7R, 0805	C0805C225M8RACTU	Kemet
5	C13	1	$470 \mu \mathrm{~F}, 16 \mathrm{~V}$,Al Organic Polymer, $12 \mathrm{~m} \Omega$, (8×11.5)	RNE1C471MDN1	Nichicon
6	C14	1	$56 \mu \mathrm{~F}, \pm 20 \%, 63 \mathrm{~V}$, Aluminum Polymer Electrolytic, 25 $\mathrm{m} \Omega,-55^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}, 2000 \mathrm{Hrs}$ @ $105^{\circ} \mathrm{C},(10 \times 14)$	RNU1J560MDN1PH	Nichicon
7	C15	1	$120 \mu \mathrm{~F}, \pm 20 \%, 63 \mathrm{~V}$, Aluminum Electrolytic, Radial, Can 3000 Hrs @ $105^{\circ} \mathrm{C}(8 \times 21.5 \mathrm{~mm})$	EKZE630EC3121MH20D	United Chemicon
8	C17	1	$330 \mathrm{nF}, 275 \mathrm{VAC}$, Film, X2	ECQ-U2A334ML	Panasonic
9	C18	1	2.2 nF, 630 V, Ceramic, X7R, 1206	C3216X7R2J222K	TDK
10	C2	1	$0.47 \mu \mathrm{~F}$ CER 25 V X7R 0805	CGA4J2X7R1E474K125AA	TDK
11	C26	1	$1000 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, Electrolytic, Gen Purpose, (8 x 11.5)	ECA-0JHG102	Panasonic
12	C27 C39	2	470 nF, 50 V, Ceramic, X7R, 0805	CL21B474KBFVPNE	Murata
13	$\begin{gathered} \hline \mathrm{C} 28 \mathrm{C} 29 \\ \mathrm{C} 34 \end{gathered}$	3	$100 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X7R, 1206	VJ1206Y104KXCAT	Vishay
14	C3	1	$100 \mu \mathrm{~F}, 400 \mathrm{~V}$, Electrolytic, Low ESR, $630 \mathrm{~m} \Omega$, (16 x 40)	EKMX401ELL101ML40S	Nippon ChemiCon
15	C35	1	$680 \mu \mathrm{~F}, 16 \mathrm{~V}$, Electrolytic, Very Low ESR, $38 \mathrm{~m} \Omega$, (8 x 20)	EKZE160ELL681MH20D	Nippon ChemiCon
16	C4 C33	2	220 nF, 25 V, Ceramic, X7R, 0805	CC0805KRX7R8BB224	Yageo
17	C45 C46	2	4.7 nF, 50 V, Ceramic, X7R, 1206	CC1206KRX7R9BB472	Yageo
18	$\begin{gathered} \hline \text { C5 C30 } \\ \text { C31 C36 } \\ \hline \end{gathered}$	4	$100 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R	K104K15X7RF5TH5	Vishay BC Components
19	C6	1	1 nF , Ceramic, Y1	440LD10-R	Vishay
20	C7	1	$2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$, Ceramic, X7R	FG24X7R1H225KRT06	TDK
21	C9	1	100 pF 100 V 10 \% X7R 0805	08051C101JAT2A	AVX
22	CON3	1	CONN TERM BLOCK 5.08 mm 2POS	ED120/2DS	On Shore Tech
23	D1	1	Diode, Schottky, $100 \mathrm{~V}, 0.075 \mathrm{~A}$, SOD123	BAT46W-TP	Micro Commercial
24	D3	1	200 V, 5 A, Diode, Schottky, Fast Recovery =< 500 ns, $>200 \mathrm{~mA}$ (Io), $-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$, TO-220AC	DST5200	Littlefuse
25	D4	1	Diode Zener 24 V 500 mW SOD123	MMSZ5252BT1G	ON Semi
26	D5	1	80 V, 8 A, Diode, Schottky, Fast Recovery $=<500 \mathrm{~ns}$, $>200 \mathrm{~mA}$ (Io), $-55^{\circ} \mathrm{C} \sim 175^{\circ} \mathrm{C}$, TO-220AC	VS-8TQ100-M3	Vishay
27	D8	1	Diode Zener 16 V 500 mW SOD123	MMSZ5246B-7-F	Diodes, Inc.
28	D9	1	$600 \mathrm{~V}, 1 \mathrm{~A}$, Ultrafast Recovery, 30 ns , SOD57	BYV26C	Philips
29	F1	1	2 A, 250 V, Slow, TR5	37212000411	Wickman
30	J1	1	4 Positions (1 x 4) Header, Shrouded, 0.098" (2.50 mm ,) Through Hole, Gold, $0.177^{\prime \prime}(4.50 \mathrm{~mm}$) mating length	DF1B-4P-2.5DSA(01)	Hirose Electric
31	J2	1	6 Position (1×6) header, 2.5 mm pitch, Vertical	DF1B-6P-2.5DSA(01)	Hirose Electric
32	JP1	1	Wire Jumper, Non-insulated, \#20 AWG, 0.2 in	8020000100	Belden
33	L1	1	CMC, 6.8 mH @ $10 \mathrm{kHz}, 1.3 \mathrm{~A}, 2$ Line, DCR $280 \mathrm{~m} \Omega$ (Typ), $-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$, Through Hole	B82731M2132A030	Epcos
34	L2 L3	2	$10 \mu \mathrm{H}$, Unshielded Wirewound Inductor, $3.45 \mathrm{~A}, 15$ m Ω Max, Radial, Vertical Cylinder	18R103C	Murata
35	L4	1	$\begin{aligned} & 1 \mathrm{mH} @ 100 \mathrm{kHz}, 2 \mathrm{~A}, 80 \mathrm{~m} \Omega, 250 \mathrm{~V},-25^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}, \\ & \mathrm{CMC} \end{aligned}$	SC-02-10GS	KEMET
36	Q1	1	MOSFET, N-Channel, $60 \mathrm{~V}, 60 \mathrm{~A}$ (Tc), 68 W (Tc), PowerPAK® SO-8, PowerPAK SO-8	SQJA62EP-T1_GE3	Vishay
37	Q2 Q4	2	MOSFET,N-Channel, $40 \mathrm{~V}, 36 \mathrm{~A}$ (Tc), 3.5 W (Ta), 7.8 W (Tc), SMT, 8-SO	SI4154DY-T1-GE3	Vishay
38	R1	1	RES, $10 \Omega, 1 \%, 1 / 4$ W, Thick Film, 1206	ERJ-8ENF10R0V	Panasonic

Power Integrations, Inc.
www.power.com

39	R11 R16	2	RES, $2.00 \mathrm{M} \Omega, 1 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8ENF2004V	Panasonic
40	$\begin{aligned} & \hline \text { R13 R47 } \\ & \text { R48 R49 } \end{aligned}$	4	RES, $10 \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF10ROV	Panasonic
41	$\begin{gathered} \hline \text { R19 R22 } \\ \text { R29 } \end{gathered}$	3	RES, $100 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
42	R2	1	RES, 196 k $\Omega, 1 \%, 1 / 4$ W, Thick Film, 1206	ERJ-8ENF1963V	Panasonic
43	R3	1	RES, $6.04 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF6041V	Panasonic
44	R4 R40	2	RES, 39 k , , 5\%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ393V	Panasonic
45	R42 R44	2	RES, $29.4 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF2942V	Panasonic
46	R5 R37	2	RES, $47.0 \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF47R0V	Panasonic
47	R51	1	RES, $4.99 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF4991V	Panasonic
48	R7	1	RES, $120 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ124V	Panasonic
49	$\begin{gathered} \hline \text { R8 R10 } \\ \text { R41 } \end{gathered}$	3	RES, $3.24 \mathrm{k} \Omega, 1 \%$, $1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF3241V	Panasonic
50	$\begin{gathered} \hline \text { R9 R14 } \\ \text { R35 } \\ \hline \end{gathered}$	3	RES, $10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
51	T1	1	Bobbin, RM10, Vertical, 12 pins	B65814C1512T001	TDK
52	U1	1	InnoMux IC	IMX111U	Power Integrations
53	U2	1	InnoSwitch3-MX IC	INN3468C	Power Integrations
54	VDR1	1	275 VAC, 45 J, 10 mm , RADIAL	V275LA10P	Littlefuse

9 PI Expert Design Tool output

Inno_MUX_Flyback_ 020119; Rev.1.1; Copyright Power Integrations 2018	INPUT	INFO	OUTPUT	UNITS	Inno3-MX Flyback Design Spreadsheet
Power Supply Basic Parameters					
VAC MIN	90.00		90	V	Minimum input AC voltage
VAC NOM			115	V	Nom. AC voltage - universal designs low line
VAC MAX			265	V	Maximum input AC voltage
POUT			41.88	W	Total output power
			45.00	W	Total maximum output power
LINEFREQ			50	Hz	Line frequency
VMIN			92.8	V	Minimum instantaneous DC input voltage at min mains
VMIN AVG			112.3	V	Average input voltage calculated at VAC MIN
OUT_NUM			3		Select number of outputs
DESIGN RESULT					Design result
Input Section					
CAP_INPUT	100.00		100.00	uF	Input capacitance
IAVG_PRIMARY			0.52	A	Average diode bridge current (DC input current)
Output 1 Specification					
VO	5.00		5.00	V	Output 1 voltage
IO	1.00		1.000	A	Output 1 current
VO_TOL	0.00		0.00	\%	Output 1 voltage tolerance
EFFICIENCY			86.00	\%	Converter efficiency for output 1
Z			60.00	\%	Secondary loss allocation factor for output 1
CONN_TYPE	AC_STACK		AC_STACK		Winding connection type
Output 2 Specification					
VO	12.00		12.00	V	Output 2 voltage
IO	1.25		1.250	A	Output 2 current
VO_TOL	0.00		0.00	\%	Output 2 voltage tolerance
EFFICIENCY			86.00	\%	Converter efficiency for output 2
Z			60.00	\%	Secondary loss allocation factor for output 2
CONN_TYPE	AC_STACK		AC_STACK		Winding connection type
Output 3 Specification					
VO			35	V	Output 3 voltage
IO	0.63		0.625	A	Output 3 current
VO_TOL	14.28		14.28	\%	Output 3 voltage tolerance
EFFICIENCY			90	\%	Converter efficiency for output 3
Z			50	\%	Secondary loss allocation factor for output 3
CONN_TYPE			AC_STACK		Winding connection type
Other Design Conditions					
VOR_TARGET			109.33	V	Maximum reflected voltage target
KP_MIN	1.05		1.054		Min. Current continuity factor for highest voltage output
Device Parameters					
DEVNAME	INN3468		INN3468		PI device name
DEVICE_MODE	Standard		Standard		Device current limit Mode
ILIMITTYP			2.20	A	Typical current limit
VDRAIN_MAX	650.00		650	V	Main switch brake down voltage
Transformer Electrical Parameters					
LP_NOM			320.87	uH	Nominal primary inductance
LP_TOL	3.00		3.00	\%	Primary inductance tolerance
NP			32	turns	Calculated primary winding total number of turns
BM			0.23	Tesla	Maximum flux density
BP			0.25	Tesla	Peak flux density
Transformer Mechanical Parameters					
CR_TYPE	RM10/I		RM10/I		Core type

Power Integrations, Inc.
www.power.com

BB_TYPE		$\begin{aligned} & \hline \text { RM10/I - } \\ & \text { (P6 + S6) } \\ & \hline \end{aligned}$		Bobbin type
AE	98.00	98.00	mm^2	Core cross section
BW		10.30	mm	Bobbin winding width
VE		4310	mm^3	Core volume
LG		0.363	mm	Estimated gap length
AL		4050	nH/Turn	Ungapped core specific inductance
ALG		313	nH/Turn	Gapped core specific inductance
Transformer Construction				
TURNS BIAS	4.00	4	turns	Turns primary bias
TURNS SEC BIAS			turns	Turns secondary bias
NP	32.00	32	Turns	Total number of primary turns
NP_SECT1		16	Turns	Primary first part - First winding section from the core
NP_SECT2		16	Turns	Primary second part - Third winding section from the core
NS1_STACK		3	turns	Output 1 number of Turns
NS1		3	turns	Sec. Winding 1 -Fourth winding section from the core
NS2_STACK		2	turns	Output 2 number of Turns
NS2	5.00	5	turns	Sec. winding 2 - Fifth winding section from the core
NS3_STACK		7	turns	Output 3 number of turns
NS3	12.00	12	turns	Sec. winding 3 - Second winding section from the core
Operating Parameters Worst case				
FS		87060	Hz	Maximum operating switching frequency
FS_MIN		54001	Hz	Minimum operating switching frequency
KRPKDP		0.64		Minimum current continuity factor
VOR_ACTUAL		109.33	V	Actual maximum reflected voltage
VOR_MARG_23MAX_ACT		0.76101		Maximum VOR margin between output 2 and 3 reflected voltage (3 Outputs Only)
DMAX		0.53		Maximum duty cycle (at VMIN and full load)
TON		7.90		Maximum controller ON time (at VMIN and full load)
TOFF		6.06		Minimum controller OFF time (at VMIN and full load)
VDRAIN		484	V	Off state drain to source voltage
VDS_ON		0.52	V	On state drain to source voltage
IP		2.24	A	Peak primary current (at VMIN and full load)
IRMS		0.90	A	Primary RMS current (at VMIN and full load)
ISRMS_STACK1		5.55	A	Secondary 1 winding RMS current
ISRMS_STACK2		3.79	A	Secondary 2 winding RMS current
ISRMS_STACK3		1.6086	A	Secondary 3 winding RMS current
PTRFLOSS_TOT		0.78	W	Total transformer power loss
PTRFLOSS_WIND		0.18	W	Transformer windings power loss
PTRFLOSS_CORE		0.60	W	Transformer core power loss
Output Parameters (Worst case)				
Output 1				
VO1		5.00	V	Output 1 voltage
IO1		1.00	A	Output 1 current
PO1		5.00	W	Output 1 power
PO1_MAX		5.00	W	Output 1 maximum power
VD1		0.40	V	Estimated forward voltage across output diode
KP1		0.64		Current continuity factor during output 1 conduction
DMAX1		0.38		Duty cycle during output 1 conduction
ISP1		23.84	A	Secondary peak current during output 1 Conduction
ISRMS1		4.05	A	Output 1 RMS current
IRIPPLE1		3.93	A	Output 1 capacitor - RMS ripple current
Output 1 Components				

Power Integrations, Inc.
www.power.com

VO1_RIPPLE	0.10	0.10	V	Output 1 ripple voltage
COUT1		1033.74	uF	Minimum output capacitance required
RESR1		0.05	R	Output 1 capacitor ESR value
COUT1_PLOSS		0.77	W	Output 1 capacitor ESR losses
VZ1		15.37	V	Minimum zener 1 clamp voltage
OSR1_PIVS		50.51	V	Synch. Rectifier 1 voltage
OSR1_RDSON		0.01	Ohm	Sync. Rectifier 1 ON resistance
OSF1_PLOSS		0.16	W	Sync. Rectifier 1 conduction Losses
OSF1_PIVS		15.37	V	Selection FET 1 minimum voltage
OSF1_RDSON		0.01	Ohm	Selection FET 1 ON resistance
OSF1_PLOSS		0.16	W	Selection FET 1 conduction losses
Output 2				
VO2		12.00	V	Output 2 voltage
IO2		1.25	A	Output 2 current
PO2		15.00	W	Output 2 power
PO2_MAX		15.00	W	Output 2 maximum power
VD2		1.00	V	Estimated forward voltage across output 2 diode/rectifier
KP2		0.89		Current continuity factor during output 2 conduction
DMAX2		0.47		Duty cycle during output 2 conduction
ISP2		14.22	A	Secondary peak current during output 2 conduction
ISRMS2		3.43	A	Output 2 RMS current
IRIPPLE2		3.19	A	Output 2 capacitor - RMS ripple current
Output 2 Components				
VO2_RIPPLE	0.10	0.10	V	Output 2 ripple voltage
COUT2		474.68	UF	Minimum output 2 capacitance required
RESR2		0.05	Ohm	Output 2 capacitor ESR value
COUT2_PLOSS		0.51	W	Output 2 capacitor ESR losses
OD2_PIVS		35.42	V	Output 2 diode voltage
OSF2_RDSON		0.01	Ohm	Selection FET 2 ON resistance
OSF2_PLOSS		0.11752	W	Selection FET 2 ON losses
OD2_PLOSS		1.25	W	Output diode 2 losses
Output 3				
VO3		35	V	Output 3 voltage
IO3		0.625	A	Output 3 current
PO3		21.875	W	Output 3 power
PO3_MAX		24.9988	W	Output 3 maximum power
VD3		1	V	Estimated forward voltage across output 2 diode
KP3		1.054		Current continuity factor during output 3 conduction
DMAX3		0.52927		Duty cycle during Output 3 conduction
ISP3		5.9254	A	Secondary peak current during output 3 conduction
ISRMS3		1.6086	A	Output 3 RMS current
IRIPPLE3		1.4822	A	Output 3 capacitor - RMS ripple current
Output 3 Components				
VO3_RIPPLE		0.1	V	Output 3 ripple voltage
COUT3		143.755	uF	Minimum output 3 capacitance required
RES3		0.05	Ohm	Output 3 capacitor ESR value
COUT3_PLOSS		0.10985	W	Output 3 capacitor ESR losses
OD3_PIVS		145.401	V	Output diode 3 voltage rating
OD3_VFD		1	V	Actual output diode 3 voltage drop
OD3_PLOSS		0.625	W	Output diode 3 losses
Bias Section				
NBIAS		4	turns	Primary bias winding turns
VB		12.00	V	Primary bias voltage
VF_BIAS		0.70	V	Primary bias voltage forward drop
VR_BIAS		58.85	V	Primary bias reverse voltage

Power Integrations, Inc.
www.power.com

CBIAS		22	uF	Primary bias capacitor
VBS			V	Secondary bias voltage
NBIAS_SEC			turns	Turns secondary bias
VF_BIASS			V	Secondary bias rectifier voltage forward drop
VR_BIASS			V	Secondary bias rectifier reverse voltage
Tolerance Analysis				
Output Index	1.00	1		Output to be displayed
VO1_VO2_VO3_Corner	nom-nom-nom	nom-nomnom		VO tolerance corner to be displayed
ILIMIT_LP_Corner	nom-nom	nom-nom		Curr.Limit/Inductance combination to be displayed
VO		5.00	V	Actual output voltage
VOR		57.60	V	Reflected voltage
IO		1.00	A	Output current
PO		5.00	W	Actual output power
FS		66640.48	Hz	Switching frequency
DMAX		0.38		Duty cycle
KP		0.80		Current continuity factor
TON		5.68	us	Controller ON time
TOFF		9.33	us	Controller OFF time
IP1		2.10	A	Primary peak current
ISRMS		3.92	A	Secondary RMS current
IRIPPLE		3.79	A	Output capacitor - RMS ripple current
BM		2143.92	Gauss	Maximum flux density (Steady State Condition)
BP		2250.98	Gauss	Peak flux density (@ 132kHz - transitory condition)
IRMS @ VMIN AVG		0.752	A	Primary RMS current at VMIN AVG (VO1=Nom, VO2=Nom, VO3=Max) or (VO1=Nom, VO2=Max)
Errors, Warnings, Information				
Information				Although the design has passed the user should validate functionality on the bench. Please check the variables listed.
Design Warnings				Design variables whose values exceed electrical/datasheet specifications.
Design Errors				The list of design variables which result in an infeasible design.

Table 2 - PIxls Results.

10 Transformer (T1) Specification

10.1 Core Information

Core RM10, TDK Part No. PC47RM10Z-12

Figure 15 - RM10 Core - geometry.

Core Characteristics

Table 3 - Core Specification.

10.2 Bobbin Information

Figure 16 - TDK RM10-12 Pin Bobbin - B65814.

10.3 Electrical Diagram

Figure 17 - Transformer Electrical Diagram.

10.4 Winding Stack Diagram

Note:

Figure 18 - Transformer Build Diagram.

10.5 Electrical Specifications

Parameter	Condition	Spec.
Electrical strength	1 second, 60 Hz from pins 1-6 to 7-1.	3000 VAC
Nominal Primary Inductance	Measured at $1 \mathrm{~V}_{\text {PK- }-\mathrm{FK},} 100 \mathrm{kHz}$ switching frequency, between pin 1 and 4, with all other windings open.	$320 \mu \mathrm{H} \pm 3 \%$
Resonant Frequency	Between pin 5 and 6, other windings open.	$1,100 \mathrm{kHz}$ (Min.)
Primary Leakage Inductance	Between pin 5 and 6, with all secondary 7, 8, 9, 10, 11 and 12 shorted.	$3 \mu \mathrm{H}$ (Max.)

Table 4 - Transformer Electrical Specification.

10.6 Materials List

Item	Description	Quantities
[1]	Core: RM10 TDK Part No. PC47RM10Z-12.	2
[2]	Bobbin: RM10-12 Pins; TDK, PI\#: 25-01132-00.	1
[3]	Magnet Wire: 0.28 mm ECW Gr 2.	30 cm
[4]	Magnet Wire: 0.5 mm ECW Gr 2.	20 cm
[5]	Magnet Wire: 0.55 mm , Triple Insulated Wire.	10 cm
[6]	Magnet Wire: 0.6 mm , Triple Insulated Wire.	20 cm
[7]	Barrier Tape: Polyester Film, 1 mil thickness, 10 mm Wide.	10 cm
[8]	Clamps: RM10 TDK Part No. B65814.	2
[9]	Varnish: MR8008B - Varnish, Insulating, Polyurethane, Transparent/Amber EMR8008B250ML Or BC-359 https://www.eisinc.com/medias/sys master/ha9/h32/8797299081246.pdf	5 ml

Table 5 - Transformer BOM.

10.7 Construction

$\begin{gathered} \text { Laver 1 } \\ \text { Primary-1 } \end{gathered}$	Start at pin 5, wind 16 turns of wire Item [4] in 1 layer with tight tension, at the last turn leave $\sim 2 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
Primary-1 termination	Terminate Primary-1 to pin 4 and place another layer of tape.
Layer 2 Primary Bias	Start at pin 1, wind 4 turns of 2 wires Item [3] in 1 layer with tight tension and terminate at pin 2.
$\frac{\text { Layer } 2}{\text { Screen: } 1}$	Start at the bobbin (next to Bias wires) with a tape, wind 12 turns of 2 wires Item [3] in 1 layer with tight tension, at the last turn leave $\sim 2 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
Screen: 1 Termination	Terminate screen: 1 to pin 3 and place another layer of tape.
$\frac{\text { Layer } 3}{\text { LED }}$	Start at pin 11, wind 12 turns of wire Item [5] in 1 layer with tight tension, at the last turn leave $\sim 4 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
$\frac{\text { Layer } 4}{\text { CV2 }}$	Start at pin 10, wind 5 turns of 2 wires Item [6] in 1 layer with tight tension, at the last turn leave $\sim 4 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
$\frac{\text { Layer } 5}{\text { CV1 }}$	Start at pin 9, wind 3 turns of 3 wires Item [6] in 1 layer with tight tension, at the last turn leave $\sim 4 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
Layer 6 Screen: 2	Take two wires Item [3], \#1 on the start at the bobbin and with a tape and \#2 to pin 3, wind 12 turns of the 2 wires in tight tension. At the last turn tape wire \#1 to the bobbin and leave $\sim 4 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
Screen: 2 Termination	Terminate Screen: 2 screen wire \#1 to pin 3 and place another layer of tape.
$\begin{gathered} \hline \text { Laver 7 } \\ \text { Primary-2 } \end{gathered}$	Start at pin 4, wind 16 turns of wire Item [4] in 1 layer with tight tension, at the last turn leave $\sim 2 \mathrm{~cm}$ of wire for the termination.
Insulation	Place 1 layer of tape Item [7] for insulation.
Layer 7 Termination	Terminate Primary-2 screen to pin 6 and place another layer of tape.
Insulation	Place 1 layer of tape Item [7] for insulation.
CV1 termination	Terminate CV1 wires to pin 12.
CV2 termination	Terminate CV2 wires to pin 8.
LED termination	Terminate LED wires to pin 7.
Insulation	Place 1 layer of tape [7] for insulation.
Finish Assembly	Gap core halves to $320 \mu \mathrm{H}$ inductance (about 0.332 mm air gap). Use clamps [8] and cut only one of the clamps pin (see pic in the next section) Label "DER635SW A3-1 XXX.X $\mu \mathrm{H}$ " (XXX.X primary inductance value in $\mu \mathrm{H}$) Varnish [9].

Table 6 - Transformer Winding Instruction.

10.8 Winding IIlustration

wD1 $1 / 2$ Primary		Start at pin 5 , wind 16 turns of wire Item [4] in 1 layer with tight tension, at the last turn leave $\sim 2 \mathrm{~cm}$ of wire for the termination.
Insulation		Place 1 layer of tape Item [7] for insulation.
WD1 termination		Terminate WD1 primary to pin 4 and place another layer of tape.
WD2 Bias		Start at pin 1, wind 4 turns of 2 wires Item [3] in 1 layer with tight tension and terminate at pin 2.

WD2
screen \#1
Insulation

WD2 termination | WD3 |
| :---: |
| LED |
| Insulation |
| WD4 |

Insulation | WD5 |
| :---: |
| CV1 |

wD6
screen \#2
Insulation

WD6 termination | WD7 |
| :---: |
| Insulation Primary |

WD7 termination

Table 7 - Transformer Winding Illustration.

10.9 Test

Test the inductance of all the windings

	$[\mu \mathbf{H}]$	Pins
$\mathbf{L}_{\text {pri-kg }} *$	4.46	$5-6$
$\mathbf{L}_{\text {pri }}$	320	$5-6$
$\mathbf{L}_{\mathrm{CV1}}$	2.8	$9-12$
$\mathbf{L}_{\mathrm{CV} 2}$	7.8	$8-10$
$\mathbf{L}_{\mathbf{L E D}}$	44.8	$7-11$
$\mathbf{L 1}_{\text {Saux }}$	5	$1-2$

Table 8 - Transformer Inductance Measurment.
*short all other pins but 5-6.
All measurement done in 100 kHz at $1 \mathrm{~V}_{\mathrm{RMS}}$.

11 Performance Data

11.1 Ful/ Load Efficiency vs. Line

Figure 19 - Full Load Efficiency vs. Line Voltage, Room Temperature.

11.2 Efficiency vs. Load for all Lines

Figure 20 - Efficiency vs. Load, Room Temperature.

Figure 21 - Output Voltage vs. Line, Room Temperature.

11.4 5 V Output Load Regulation

Figure 22 - 5 V Output vs. 5 V Load, Room Temperature.

Figure 23-12 V Output vs. 12 V Load, Room Temperature.

Figure 24 - Input Power vs. Input Voltage, Room Temperature.

11.7 LED Dimming

11.7.1 Analog Dimming

Figure 25 - Analog Dimming.

Figure 26 - PWM Dimming.

Low frequency

Figure 27 - Low Frequency PWM Waveform.

Figure 28 - Meduim Frequency PWM Waveform.

High frequency

Figure 29 - High Frequency PWM Waveform.

12 Waveforms

12.1 Load Transient Response

12.1.1 5 V Load transient

Test was performed at 230 VAC, CV1 load set to 1 A, CV2 load set to 1.25 A and 40 V LED panel used.
$0 \mathrm{~A}-1 \mathrm{~A}-0 \mathrm{~mA}$ transient load applied to CV1 output at a 100 Hz rate, 50% duty cycle.

Figure 30 - CV1 (5 V) Output - Load Transient.

12.1.2 12 V Load Transient

Test was performed at 230 VAC, CV1 load set to 1 A, CV2 load set to 1.25 A and 40 V LED panel used.

0 A - 1.25 A - 0 mA transient load applied to CV2 output at a 100 Hz rate, 50% duty cycle.

Figure 31 - CV2 (12 V) Output - Load Transient.

12.2 Switching Waveforms

12.2.1 Maximum Voltage on the Primary Transistor

Voltages on the primary transistor drain to source on each pulse (LED, Vo2 and Vo1). Test condition is full load and maximum voltage, 375 VDC (equal to the peak of 265 VAC).

Figure 32 - Maximum Voltage Vds Waveform.

12.2.2 Primary Frequency

Average and maximum frequency at 90 VAC at full load.

Figure 33 - Maximum Frequency Waveform.

12.2.3 Currents Waveform

Average and maximum currents (Peak, RMS and average) at 90 VAC @ full load.

Figure 34 - Currents Waveform.

Vds Pri yellow Ipri green Isr cyan Io1 red Io2 orange \qquad
Figure 35 - Zoom on Transformer Pri/Sec Current Waveform.

Isr cyan Io1 red Io2 orange
Figure 36 - Zoom on Transformer Sec Current Waveform.

12.3 Start-Up Waveform

12.3.1 Starting-up with Full Load

	\mathbf{V}	\mathbf{I}
Input	90 VAC	
Out1	5 V	1 A
Out2	12 V	1.25 A
LED	40 V	0.65 A
Start-up time	104 ms	
Stable time		211 ms

	\mathbf{V}	\mathbf{I}
Input	265 VAC	
Out1	5 V	1 A
Out2	12 V	1.25 A
LED	40 V	0.65 A
Start-up time	106 ms	
Stable time	215 ms	

Figure 37 - Start-up Waveform with Full Load.

12.3.2 Starting-up with No-Load

Figure 38 - Start-up Waveform No-Load.

12.3.3 Starting-up with Shorted/No FB 5 V Output

Figure 39 - Starting-up with Shorted CV1 or no FB1.

12.3.4 Starting-up with Shorted/No FB 12V Output

Figure 40 - Starting-up with Shorted CV2 or no FB2.

12.3.5 Starting-up with Shorted/No FB LED Output

Figure 41 - Starting-up with Shorted LED output or no FB3.

12.3.6 $5 \mathrm{~V}, 12 \mathrm{~V}$, LED and SR FET/Diode Voltage Waveforms

12.3.6.1 SR Voltage under Full Load at 265 VAC

Figure 42 - SR D-S Voltage Under Full Load at 265 VAC.

Maximum voltage on SR is $<50 \mathrm{~V}$.

12.3.6.2 Voltage on CV1 Selection FET Under Full Load at 265 VAC

Figure 43 -CV1 Selection FET D-S voltage Under Full Load at 265 VAC.

The maximum D-S voltage across the selection FET of CV1 is $<15 \mathrm{~V}$.

12.3.6.3 CV2 Selection FET D-S Voltage Under full load at 265 VAC

Figure 44 - CV2 selection FET Under full load at 265 VAC line voltage.

The maximum D-S voltage across the CV2 selection FET is $<20 \mathrm{~V}$.

12.3.6.4 CV2 Blocking Diode Reverse Voltage under Full Load at 265 VAC

Figure 45 - Voltage on CV2 Diode Under Full Load at 265 VAC.

The maximum reverse voltage across CV2 Diode is $<40 \mathrm{~V}$.

12.3.6.5 LED Rectifier Diode Reverse Voltage under Full Load at 265 VAC

Figure 46 - Voltage on LED Diode Under Full Load at 265 VAC.

The maximum reverse voltage across the LED rectifier diode is $<150 \mathrm{~V}$.

12.4 Brown-In and Brown-Out

12.4.1 Response at $90 \mathrm{~V}-0 \mathrm{~V}-90 \mathrm{~V}$

Channel 1	Channel 2	Channel 3	Channel 3
CV1 5 V Output	AC Input Voltage	LED Output Voltage	CV2 12 V Output
Voltage [V]	[V]	Voltage [V]	

Figure 47 - Brown-In and Brown-Out response, 90 VAC - 0 VAC - 90 VAC.

VAC Input	Brown In Peak Voltage ($\left.\mathbf{V P K}_{\mathbf{P K}}\right)$	Brown In RMS Voltage (VRMS)	Brown Out Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown Out RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$
90 VAC	112.33	79.43	113.38	80.17

Figure 48 - Brown-Out Response, 90 VAC - 0 VAC - 90 VAC.

Figure 49 - Brown-In Response, 90 VAC - 0 VAC - 90 VAC.
12.4.2 Response at $265 \mathrm{~V}-0 \mathrm{~V}-265 \mathrm{~V}$

Channel 1	Channel 2	Channel 3	Channel 3
CV1 5 V Output	AC Input Voltage	LED Output Voltage	CV2 12 V Output
Voltage [V]	[V]	Voltage [V]	

Figure 50 - Brown-In and Brown-Out response, 265 VAC - 0 VAC - 265 VAC.

VAC Input	Brown In Peak Voltage ($\mathbf{V P K}_{\text {PK }}$)	Brown In RMS Voltage (VRMS	Brown Out Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown Out RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$
265 VAC	114.42	80.91	113.35	80.15

Figure 51 - Brown-Out Response, 265 VAC - 0 VAC - 265 VAC.

Figure 52 - Brown-In Response, 265 VAC - 0 VAC - 265 VAC.
12.4.3 Response at $0 \mathrm{~V}-450 \mathrm{VDC}-0 \mathrm{~V}$

VDC Input	Brown In Peak Voltage (VDC)	Brown In RMS Voltage (VRMS)	Brown Out Peak Voltage (VDC)	Brown Out RMS Voltage (VRMS)
450 VDC	447.01	$316.08(\mathrm{VAC})$	414.02	$292.75(\mathrm{VAC})$

Figure 53 - Brown-In and Brown-Out Response, 0 VDC - 450 VDC - 0 VDC.

12.5 Overvoltage and Over Current Protections

12.5.1 CV1 over Voltage and Over Current Protection

Figure 54 - CV1 Output Overvoltage Protection.

Figure $5 \mathbf{5}$ - CV1 Output Over Current Protection.

12.5.2 CV2 OV OC Protections

Figure 56 - CV2 Output Overvoltage Protection.

Figure 57 - CV2 Output Over Current Protection.

12.5.3 LED OV OC Protections

Figure 58 - LED Output Overvoltage Protection.

Figure 59 - LED Output over Current Protection.

12.6 Output Ripple Measurements

12.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe were utilized in order to reduce noise pick-up. Details of the probe modification are provided in Figure 60.

The probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) $0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$ ceramic type and one (1) $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 60 - Oscilloscope Probe Used in Ripple Measurement.

12.6.2 CV1 Output Ripple

Set-up

- 90 VAC - 265 VAC
- Output 5 V @ $5 \mathrm{~W}, 12 \mathrm{~V}$ @ 15 W and LED_40 V @ 25 W
- 20 MHz bandwidth in the scope, 100 nF ceramic capacitor and 10 uF @ 50 V electrolytic capacitor with sniffing connected to output pin

BOM

Level	Value	PN	ESR/Ripple	Size D*L	Quantity
First level	$6.3 \mathrm{~V} @ 1 \mathrm{mF}$ polymer	RL80J102MDN1KX	$9 \mathrm{mOhm} / 5.7 \mathrm{~A}$	$8 * 8$	2
Inductance	10uH@3.45A	18R103C	15 mOhm	$13.7 * 16$	1
Second level	$6.3 \mathrm{~V} @ 1 \mathrm{mF}$	ECA-0JHG102	370 mOhm	$8^{*} 11.5$	1
Second level	Ceramic 100nF	VJ1206Y104KXCAT		1206	

Table 9-5 V Filter BOM.

Figure 61 - Vo1 Ripple Waveform.

Result - 44.8 mV ripple

12.6.3 CV2 Output Ripple

Set-up

- 90 VAC - 265 VAC
- Output 5 V @ $5 \mathrm{~W}, 12 \mathrm{~V}$ @ 15 W and LED_40 V @ 25 W
- 20 MHz bandwidth in the scope, 100 nF ceramic capacitor and 10 uF @ 50 V electrolytic capacitor with sniffing connected to output pin

BOM

Level	Value	PN	ESR/Ripple	Size D*L	Quantity
First level	16V@470uF polymer	RNE1C471MDN1	$10 \mathrm{mOhm} / 5.4 \mathrm{~A}$	$8^{*} 11.5$	1
Inductance	10uH@3.45A	18R103C	15 mOhm	$13.7^{*} 16$	1
Second level	16V@680uF	EZKE160ELL681MH20D	$69 \mathrm{mOhm} / 1.25 \mathrm{~A}$	$8^{* 20}$	2
Second level	Ceramic 100nF	VJ1206Y104KXCAT		1206	1

Table 10-12 V Filter BOM.

Figure 62 - Vo2 Ripple Waveform.

Result - 91.5 mV ripple

12.7 LED output

Setup

- 90 VAC - 265 VAC
- Output 5 V @ $5 \mathrm{~W}, 12 \mathrm{~V}$ @ 15 W and LED_40 V @ 25 W
- 20 MHz bandwidth in the scope, measured current

BOM

Level	Value	PN	ESR/Ripple	Size $\mathbf{D} * \mathbf{L}$	Quantity
First level	63V@56uF polymer	KMG10WV1000UF10X12.5	$25 \mathrm{mOhm} / 2.6 \mathrm{~A}$	$10^{* 12.5}$	1
Inductance	Non				
Second level	63 V@120uF polymer	EKZE06303121MH20D	$120 \mathrm{mOhm} / 0.82$	$8 * 20$	1
Second level	Ceramic 100nF	VJ1206Y104KXCAT		1206	1

Table 11 - LED filter BOM

Figure 63 - LED Ripple Waveform.

Result - 27 mA ripple

13 Conducted EMI

With worst case test results, there is still 9.2 dB minimum margin.

- PSU GND is connected to earth (PE)
- Full load

$13.1 \quad 115$ VAC

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$	Comment
0.150000	56.8	1000.000	10.000	On	N	20.0	9.2	66.0	

Final Measurement Detector 2

Frequency (MHz)	Average $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$	Comment
0.150000	46.1	1000.000	10.000	On	L1	20.0	9.9	56.0	

Figure 64 - EMI Test Results at 115 V .

13.2230 VAC

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$	Comment
0.154500	54.5	1000.000	10.000	On	L1	20.0	11.3	65.8	
0.230500	46.6	1000.000	10.000	On	L1	20.0	15.8	62.4	
0.302500	42.2	1000.000	10.000	On	N	20.0	18.0	60.2	
25.503500	43.2	1000.000	10.000	On	L1	20.0	16.8	60.0	

Final Measurement Detector 2

Frequency (MHz)	Average $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$	Comment
0.212500	43.8	1000.000	10.000	On	N	20.0	9.3	53.1	
0.599500	36.2	1000.000	10.000	On	N	20.0	9.8	46.0	

Figure 65 - EMI Test Results at 230 V .

14 ESD Test

Figure 66 - ESD Set-Up.

14.1 ESD contact pulse on the PSU GND.

Level $\mathbf{(V)}$	Input Voltage $\mathbf{(V A C)}$	Discharge	Number of Discharge	Test Result (Pass/Fail)
2000	230	Contact	10	Pass
-2000	230	Contact	10	Pass
4000	230	Contact	10	Pass
-4000	230	Contact	10	Pass
6000	230	Contact	10	Pass
-6000	230	Contact	10	Pass
8000	230	Contact	10	Pass
-8000	230	Contact	10	Pass
8800	230	Contact	10	Pass
-8800	230	Contact	10	Pass

Table 12 - ESD Contact Discharge Test.

14.2 ESD Air discharge pulse on the PSU GND.

Level $\mathbf{(V)}$	Input Voltage (VAC)	Discharge	Number of Discharge	Test Result (Pass/Fail)
2000	230	Air	10	Pass
-2000	230	Air	10	Pass
4000	230	Air	10	Pass
-4000	230	Air	10	Pass
8000	230	Air	10	Pass
-8000	230	Air	10	Pass
15000	230	Air	10	Pass
-15000	230	Air	10	Pass
16500	230	Air	Air	10
-16500	230	$13-$	Pass	

Table 13 - ESD Air Discharge Test.

15 Surge Test

Surge pulse between L-N with 2Ω resistance.

Ring Wave Voltage $(\mathbf{k V})$	Phase Angle $\left(\mathbf{0}^{\mathbf{\circ}}\right)$	V measured (\mathbf{V})	I measured (\mathbf{A})	Number of Strikes	Test Result
1	0	769	127	10	PASS
-1	0	-789	-145	10	PASS
1	90	916	249	10	PASS
-1	90	-642	-120	10	PASS
1	180	795	147	10	PASS
-1	180	-796	-123	10	PASS
1	270	650	123	10	PASS
-1	270	-908	-237	10	PASS

Table 14 - Surge L-N Test.
Surge pulse between L-PE with 12Ω resistance.

Ring Wave Voltage $(\mathbf{k V})$	Phase Angle $\left({ }^{\circ}\right)$	V measured (\mathbf{V})	I measured (\mathbf{A})	Number of Strikes	Test Result
2	0	1927	54	10	PASS
-2	0	-1912	-29	10	PASS
2	90	2246	63	10	PASS
-2	90	-1568	-25 A	10	PASS
2	180	1900	54	10	PASS
-2	180	-1895	-26	10	PASS
2	270	1601	47	10	PASS
-2	270	-2223	-31	10	PASS

Table 15 - Surge L-PE Test.
Surge pulse between N-PE with 12Ω resistance.

Ring Wave Voltage $(\mathbf{k V})$	Phase Angle $\left({ }^{\circ}\right)$	V measured (\mathbf{V})	I measured (\mathbf{A})	Number of Strikes	Test Result
2	0	1918	59	10	PASS
-2	0	-1901	-29	10	PASS
2	90	1914	54	10	PASS
-2	90	-1917	-29	10	PASS
2	180	1924	59	10	PASS
-2	180	-1888	-26	10	PASS
2	270	1910	65	10	PASS
-2	270	-1901	-25	10	PASS

Table 16 - Surge N-PE Test.

16 Thermal Performance

16.1 Cooling Assembly

Aluminum plate $64.7 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ with holes and thermal pad of $17.5 \mathrm{~mm} \times$ 16 mm , second layer is $70.7 \mathrm{~mm} \times 76 \mathrm{~mm}$ Nomex Isolation with plastic screws and 2.4 mm washers. The hole is exactly the chip size $10.3 \mathrm{~mm} \times 9.4 \mathrm{~mm}$.

Aluminum HS
Top View

Figure 67 - Heat Sink Dimensions.

Numex Isolation
Top View

Figure 68 - Isolation Dimensions.

Figure 69 - Heat Sink Aluminum Plate.

Last stage is to assembly the board to the heat sink.

Figure 70 - Cooling Assembly.

16.2 Thermal Set-Up

This is the Top view from the thermal camera point of view.

Figure 71 - Top Thermal Set-Up.

This is the Bottom view from the thermal camera point of view.

Figure 72 - Bottom Thermal Set-up.

16.390 VAC

Figure 73 - Line $=90$ V Full Power Thermal Image - Bottom View.

Figure 74 - Line $=90 \mathrm{~V}$ Full Power - Thermal Image - Top View.

Part	U2 chip	Core	CMC	$\mathbf{1 2 ~ V}$ Diode	LED Diode	SR FET	$\mathbf{5} \mathbf{~ V}$ FET	$\mathbf{1 2} \mathbf{~ V}$ FET	U1 chip
$\mathbf{T}\left[\mathbf{C}^{\circ}\right]$	75.5	67.6	72.4	79.6	73.8	66.4	52.8	65.9	61.5
$\boldsymbol{\Delta T}\left[\mathbf{C}^{\circ}\right]$	47.9	40.4	44.4	52.4	46.4	38.3	24.7	37.8	33.4

Table 17 - Line = 90 V Full Power - Component Temperatures .

16.4115 VAC

Figure 75 - Line = 115 V Full Power Thermal Image Bottom View.

Figure 76 - Line $=115$ V Full Power Thermal Image - Top View.

Part	U2 chip	Core	CMC	$\mathbf{1 2} \mathbf{~ V}$ Diode	LED Diode	SR FET	$\mathbf{5} \mathbf{~ V}$ FET	$\mathbf{1 2}$ V FET	U1 chip
$\mathbf{T}\left[\mathbf{C}^{\circ}\right]$	68.1	67.8	61.3	79.1	73.7	65.1	52	64.9	60
$\boldsymbol{\Delta T}\left[\mathbf{C}^{\circ}\right]$	40.8	40.5	34	51.8	46.4	37.9	24.8	37.7	32.8

Table 18 - Line = 115 V Full Power Component Temperatures.
16.5230 VAC

Figure 77 - Line = 230 V Full Power Thermal Image - Bottom View.

Figure 78-230 V Thermal Top View.

Part	U2 chip	Core	CMC	$\mathbf{1 2} \mathbf{~ V}$ Diode	LED Diode	SR FET	$\mathbf{5} \mathbf{~ V}$ FET	$\mathbf{1 2} \mathbf{~ V}$ FET	U1 chip
$\mathbf{T}\left[\mathbf{C}^{\boldsymbol{}}\right]$	67.5	70.3	47.9	79.9	74	65.6	52	65.6	59.8
$\boldsymbol{\Delta T}\left[\mathbf{C}^{\circ}\right]$	39.7	42.5	20.1	52.1	46.2	38.5	24.9	38.5	32.7

Table 19 - Line $=230$ V Full Power - Component Temperatures.

$16.6 \quad 265$ VAC

Figure 79 - Line = 265 V Full Power Thermal Image - Bottom View.

Figure 80 - Line = 265 V Thermal Image - Top View.

Part	U2 chip	Core	CMC	$\mathbf{1 2} \mathbf{~ V}$ Diode	LED Diode	SR FET	$\mathbf{5} \mathbf{V}$ FET	$\mathbf{1 2}$ V FET	U1 chip
$\mathbf{T}\left[\mathbf{C}^{\circ}\right]$	70	70.6	45.8	79.8	73.8	66.6	53.1	66.3	61.2
$\boldsymbol{\Delta T}\left[\mathbf{C}^{\circ}\right]$	42.8	43.4	18.6	52.6	46.6	38.5	25	38.2	33.1

Table 20 - Line $=265$ V Full Power - Component Temperatures.

17 Revision History

Date	Author	Revision	Description \& Changes	Reviewed
$5-$ Mar-19	NE	2.0	Initial Release.	Apps \& Mktg
19-Mar-19	EO	3.0	Update for Code L.	Apps \& Mktg
21-Aug-19	NE	3.1	Updated Figures 12, 13, 14.	Apps \& Mktg
12-Aug-21	KM	3.2	Updated Text and Schematic	Apps \& Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail:chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

GERMANY (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@
power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

SINGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

