Current Limiter with Active Damping for Dimmable Lighting Systems

Description

- Lighting systems, such as an LED driver, can utilize a current limiter for surge protection and active damping
- Current limiter includes a switchable resistor whose impedance can be varied by either a surge control or a damper control circuit
- Surge control circuit can increase the impedance of the switchable resistor when the rectified voltage V_{RECT} is greater than a surge threshold
- Damper control circuit can increase the impedance of the switchable resistor after the dimmer circuit switches on to dampen input current I_{IN}.
- Damper control circuit can reduce the impedance when V_{RECT} reaches a damper threshold to stop damping

Benefits

- Allows a lighting system to withstand high energy surges while simultaneously providing active damping for dimmer circuits
- Improves overall efficiency
- Could be used with: LED drivers, LinkSwitch-PH, LinkSwitch-PL

Figure 1. Lighting system with a current limiter which includes a switchable resistor, surge control, and damper control

US 9,332,613 Rev: 1; MAY 2019; PI.0373 World Headquarters 5245 Hellyer Avenue, San Jose, CA 95138, USA, Main: +1-408-414-9200

1 Customer Service Phone: +1-408-414-9665, Fax: +1-408-414-9765, Email: <u>info@power.com</u> On the Web <u>www.power.com</u>

Example Current Limiter with Active Damping

Low side coupled switchable resistor, includes R9, VR2 and Q3

Q3 varies impedance of the current limiter by turning ON or OFF; impedance equal to R9 when Q3 is OFF, R9 shorted when Q3 is ON

Surge control circuit includes R3, R4, R5, VR1 and Q2

- Adjusts voltage at the control input of Q3 in response to voltage across R5
- Q3 is turned off when the voltage across R5 is greater than or equal to the sum of the breakdown voltage of VR1 and the turn on voltage of Q2

Damper control circuit includes R6, R7, R8, D1, Q1 and C1

- ▶ When dimmer circuit is first turned ON, Q3 is turned OFF
- Q3 turns ON when the voltage across C1 reaches a damper threshold
- Q1 is turned ON to discharge C1 when voltage on C1 exceeds the voltage across R8 by the turn-on voltage of Q1

US 9,332,613 Rev: 1; MAY 2019; PI.0373

2