

Title	50 W Flyback Converter with Two Independently Regulated Outputs Using InnoMux [™] 2-EP IMX2378F-H415				
Specification	90 VAC – 265 VAC Input; 12 V / 1.67 A and 24 V / 1.25 A Outputs				
Application	Independently Regulated Multi-Output PSU				
Author	Applications Engineering Department				
Document Number	RDR-1043				
Date	November 23, 2024				
Revision	С				

Summary and Features

Unique single-stage, multi-output flyback architecture enabling:

- High efficiency across line.
- Accurate independently regulated 12 V and 24 V outputs.
 - ±1% voltage accuracy across line and load
- Safety features
 - Output overvoltage protection (OVP)
 - Thermal protection with hysteretic shutdown
 - Input voltage monitor with brown-in/brown-out and line overvoltage protection

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.

Table of Contents

1	Introduc	tion	4					
2	2 Power Supply Specification							
3	3 Schematic							
4	Circuit D	Description	8					
	4.1 Inp	ut Rectifier and EMI Filter	8					
	4.2 Prir	nary-Side	8					
	4.2.1	Primary Switch Switching Circuit	8					
	4.2.2	Primary-Side Controller Power Source and OVP Protection	8					
	4.2.3	Primary-Side OVP, Brown-In and Brown-Out Protection	8					
	4.2.4	Primary Peak Current Limit	8					
	4.3 Sec	ondary-Side	9					
	4.3.1	Primary to Secondary-Side Communication	9					
	4.3.2	InnoMux2-EP Power Supply	9					
	4.3.3	Synchronous Rectifier (SR) MOSFET Drive	9					
	4.3.4	Selection MOSFET Drive for Q2	9					
	4.3.5	Output Control	9					
5	PCB Lay	out	11					
6	Bill of M	aterials	12					
7	Transfo	mer (T1) Specification	14					
	7.1 Cor	e Information	14					
	7.2 Bob	bin Information	15					
	7.3 Elec	ctrical Winding Diagram	16					
	7.4 Tra	nsformer Electrical Specification	16					
	7.5 Wir	ding Stack Diagram	17					
	7.6 List	of Materials	17					
8	Transfo	mer Design Spreadsheet	18					
9	Perform	ance	21					
	9.1 Full	Load Efficiency vs. Line	21					
	9.2 Effi	ciency vs. Load	22					
	9.3 Out	put Load Regulation	23					
	9.4 No-	Load and Standby Input Power ($I_{CVHV} = 0 A$)	27					
	9.5 Loa	d Transient Response	28					
	9.5.1	CV1 Step Load Transient	28					
	9.5.2	CVHV Step Load Transient	29					
	9.6 Swi	tching Waveforms	30					
	9.6.1	Primary Switch Maximum Voltage	30					
	9.6.2	SR FET Voltage Waveform	31					
	9.6.3	Selection FET Voltage Waveform	32					
	9.6.4	CVHV Diode Reverse Voltage Waveform	33					
	9.6.5	BPP Rectifier Diode Reverse Voltage Waveform	34					
	9.6.6	Primary Switching Frequency	35					
	9.6.7	Maximum Voltage Stress	36					
	9.7 Sta	rt-Up	37					

9.7.1	Full Load Start-up	37
9.7.2	No-Load Start-up	38
9.8 Ou	tput Ripple Measurements	39
9.8.1	Ripple Measurement Technique	39
9.8.2	CV1 and CVHV Output Ripple	40
9.9 Th	ermal Performance	42
9.10 Au	dible Noise	44
9.11 Co	nducted Emissions	46
10 Revis	ion History	48

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a switch-mode power supply (SMPS) intended for appliances, industrial applications, or smart meters, and utilizes the IMX2378F-H415 from the InnoMux2-EP family of ICs.

The power supply has two Constant Voltage (CV) outputs: 1.67 A, 12 V and 1.25 A, 24 V, and can deliver a total maximum output power of 50 W, across universal mains input (90 VAC to 265 VAC). This design shows the high efficiency and accurate output regulation achieved by the multiplexing power control algorithm of the InnoMux-2 IC. The design demonstrates a high level of integration and high efficiency possible for a multi-output design using this technology.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – Populated Circuit Board Photograph, Top.

Figure 2 – Populated Circuit Board Photograph, Bottom.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. The actual performance is illustrated in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	VIN	90		265	VAC	3 Wire Input.
Frequency	f LINE	47	50/60	64	Hz	
Output						
Output Voltage 1	V _{OUT1}	11.4	12	12.6	V	±5%.
Output Ripple Voltage 1	V RIPPLE1			240	mV	$\pm 1\%$, 20 MHz Bandwidth.
Output Current 1	I _{OUT1}	0		1.67	Α	
Output Voltage 2	V _{OUT2}	22.8	24	25.2	V	±5%.
Output Ripple Voltage 2	V RIPPLE2			480	mV	$\pm 2\%$, 20 MHz Bandwidth.
Output Current 2	Iout2	0		1.25	А	
Output Power	Роит		50		W	
Efficiency						
Full Load	η		90		%	Measured at 230 VAC, 25 °C.
Standby Input Power	-			<0.3	W	Measured at 230 VAC 25 °C, 5 V 30 mA.
Environmental						
Ambient Temperature	Тамв	0		40	٥C	Free Convection, Sea Level.

 Table 1 – Power Supply Specifications.

3 Schematic

4 Circuit Description

4.1 Input Rectifier and EMI Filter

A two-stage EMI filter is used, L1 and C17, for the lower frequency range and L4, C46, C47 for the high frequency range.

The bulk storage capacitor C3 provides DC voltage smoothing after the bridge rectifier BR1. Varistor VDR1 provides protection against differential voltage surges. Resistor R12 (NTC) limits the inrush current during power up. Fuse F1 protects the PSU from drawing excessive current from the mains in the event of catastrophic circuit failure.

4.2 Primary-Side

4.2.1 **Primary Switch Switching Circuit**

The transformer primary is connected between the input DC bus (TXPRI+) and the drain D of the integrated primary switch of the InnoMux2-EP IC (U1, pin 28). The primary current loop closes at the negative terminal of C2 via the S pin (tab) of U1 (pin 19). An R2CD type primary clamp (D2, R1, R57, R2, R52, VR2, C18 and C50) is used to limit the peak drain voltage on the primary switch induced by the transformer leakage inductance and output trace inductance when the switch turns off.

4.2.2 Primary-Side Controller Power Source and OVP Protection

The primary-side controller is part of the InnoMux2-EP IC (U1) single chip solution. It is self-starting, using an internal high-voltage current source connected to the DRAIN pin to charge the BPP capacitor, C2, when AC voltage is first applied to the converter input. During normal operation (steady-state), the primary-side of the controller is powered from an auxiliary winding on the main transformer. The voltage across this winding is rectified and filtered using diode D1 and capacitor, C48. Resistor R66 limits transient current. The primary auxiliary output is then connected to the BPP pin via current limiting resistor R14.

4.2.3 Primary-Side OVP, Brown-In and Brown-Out Protection

Primary-side output overvoltage protection (OVP) is implemented by a Zener diode, VR3 and series resistor, R37. In the event of an uncontrolled overvoltage at the output, the increased voltage across the bias winding causes the Zener diode, VR3, to conduct increasing the current into the BPP pin. If this current exceeds $I_{SD} = 7.5$ mA, the OVP protection is triggered, and the controller implements a latched shutdown.

Resistors, R11 and R16, provide line voltage sensing for brown-in and brown-out and are set to approximately 75 VAC and 65 VAC respectively.

4.2.4 Primary Peak Current Limit

The value of capacitor C2 is used to set the maximum primary current to STANDARD or to INCREASED level. In this case, 470 nF capacitance sets the primary-side controller peak current limit to its STANDARD level of 1.7 A.

4.3 Secondary-Side

The secondary-side of the InnoMux2-EP IC (U1) is powered from the BPS rail which is internally regulated to 5 V. Capacitor C7 is a local decoupling capacitor.

4.3.1 Primary to Secondary-Side Communication

The secondary-side of the InnoMux2-EP IC (U1) sends switching requests to the primaryside controller via the internal FluxLink[™] galvanically isolated communication channel.

4.3.2 InnoMux2-EP Power Supply

During start-up the InnoMux2-EP secondary-side controller is powered from VHV via R47. There is a local decoupling capacitor C36 connected close to the VHV pin of U1. Resistor R47 and C36 are optional and provide additional ESD protection. An internal regulator lowers the VHV voltage to 5 V and supplies it to the BPS bus (U1, pin 6).

In steady state, when the voltage on VCV1 (U1, pin 11) rises above the BPS source threshold $V_{BPS(VCV1)}$ (~7.9 V), the power input of the internal BPS regulator is switched from VHV to VCV1. Resistor R48 and capacitor C30 provide local decoupling and ESD protection.

4.3.3 Synchronous Rectifier (SR) MOSFET Drive

The SR pin is used to drive the SR MOSFET (Q1) when the transformer is delivering energy to the secondary circuit. The gate voltage of the SR MOSFET is reduced before the end of secondary discharge, to keep sufficient SOURCE to DRAIN voltage across the SR MOSFET. This prevents premature turn-off of the SR MOSFET.

In DCM operation the SR MOSFET (Q1) is turned on for a short period of time shortly before the primary switch is turned on. This action generates a reverse current in the CV1 secondary winding, which then causes a reverse current flow in the transformer on the primary-side due to commutation when the SR MOSFET is turned off. This reverse current discharges the voltage across the primary switch until the voltage is close to zero, allowing the primary switch to turn on at zero-voltage. This is termed SR-ZVS and substantially reduces switching loss.

4.3.4 Selection MOSFET Drive for Q2

The gate drive amplitude for the selection MOSFET Q2 is approximately equal to the voltage on the BPS rail (5 V). Consequently, logic level MOSFETs must be used. When CDR1 is low, capacitor C4 is charged up to the level of V_{CV1} from CV1 output via diode D10. When the selection MOSFET Q2 needs to be turned on, CDR1 pin voltage is raised from GND to BPS, causing the gate voltage of the selection MOSFET to rise to $V_{CV1}+V_{BPS}$.

4.3.5 Output Control

Rectification for the CV1 output is provided by the synchronous rectifier MOSFET (Q1) and the CV1 selection MOSFET (Q2). To ensure low output ripple voltage, a Π – type LC filter

(C10, C26 and L2) is employed. A low ESR capacitor, C10, is used in the first stage to mitigate the ripple current. Capacitor, C26, is an Al-polymer type to minimize switching noise. Additionally, a multilayer ceramic (MLC) capacitor C28 is connected across the CV1 output terminals to provide a low-impedance bypass for high-frequency noise.

Output rectification for the CVHV output is provided by SR FET (Q1) and diode (D3). Very low-ESR capacitors, C14 and C15, provide energy storage and filtering at the output. An inductor, L5, is inserted between C14 and C15 to reduce the ripple and noise at the CVHV output.

The RC snubber network (R6, R75, C19 and D13) serves to dampen high-frequency ringing across the SR MOSFET Q1. This ringing is a result of the transformer leakage inductance and the secondary trace inductance oscillating with the MOSFET parasitic capacitance. The RC snubber network, R76 and C56, dampens high-frequency ringing across the CV1 selection MOSFET Q2, while the RC snubber network, R13 and C9, reduce high-frequency transient voltage across the CVHV diode (D3).

When both the selection MOSFET (Q2) and the SR FET (Q1) are turned on, the transformer secondary winding turns ratios are set such that the voltage on the anode of D3 is below VCVHV. As a result, D3 remains reverse-biased, ensuring that all the transformer energy is directed to the CV1 output through Q1.

When the selection MOSFET (Q2) is turned off, and SR MOSFET (Q1) is turned on, the voltage on the anode of D3 rises until it is forward-biased. In this state, all the transformer energy is then directed to CVHV output.

The VCV1 output voltage is set by R35, R54, R10 and C51 with control provided to FB1 (U1, pin 1). Loop compensation is necessary due to the use of L2 and is provided by R9 and C27. The VCVHV output voltage is set by R7, R56, R8 and C53 with the control signal provided to FBHV (U1, pin 8). Loop compensation is necessary due to the use of L5 and is provided by R72 and C54.

5 PCB Layout

Figure 4 – Printed Circuit Board Layout, Top.

Figure 5 – Printed Circuit Board Layout, Bottom.

6 Bill of Materials

Item	Ref Des	Description	Mfg Part Number	Mfg
1	BR1	RECT BRIDGE, GP, 800V, 4A, Z4-D	Z4DGP408L-HF	Comchip Tech
2	C2	470 nF, ±10%,50 V, Ceramic, X7R, 0805	CL21B474KBFVPNE	Samsung
3	C3	120 uF, 400 V, Electrolytic, (18 x 35.5)	UPT2G121MHD6	Nichicon
4	C4	220 nF, 25 V, Ceramic, X7R, 0805	CC0805KRX7R8BB224	Yageo
5	C6	4.7 nF, Ceramic, Y1	440LD47-R	Vishay
6	C7	4.7 uF, 50 V, Ceramic, X7R, 1206	UMK316AB7475KL-T	Taiyo Yuden
7	C9	1 nF, 200 V, Ceramic, X7R, 0805	08052C102KAT2A	AVX Corp
8	C10	1000 μF, ±20%, 16 V, Aluminum - Polymer Capacitors Radial, Can, 12mOhm 5000 Hrs @ 105°C, (10 x 13)	16SEPF1000M+T	Panasonic
9	C14	470 uF, 35 V, Electrolytic, Low ESR, 23 mOhm, (10 x 20)	UHD35470MPD	Nichicon
10	C15	470 uF, 35 V, Electrolytic, Low ESR, 23 mOhm, (10 x 20)	UHD35470MPD	Nichicon
11	C17	470 nF, 275 VAC, Film, X2	80-R46KI347050P1M	Kemet
12	C18	1 nF, 1000 V, Ceramic, X7R, 1206	CC1206KKX7RCBB102	Yageo
13	C19	4.7 nF, 200 V, Ceramic, X7R, 0805	08052C472KAT2A	AVX Corp
14	C26	1000 μF, ±20%, 16 V, Aluminum - Polymer Capacitors Radial, Can, 12mOhm 5000 Hrs @ 105°C, (10 x 13)	16SEPF1000M+T	Panasonic
15	C27	470 nF, 50 V, Ceramic, X7R, 0603	UMK107B7474KA-TR	Taiyo Yuden
16	C28	2.2 uF, ±10%,50 V, Ceramic, X7R, 1206 (3216 Metric)	CL31B225KBHNNNE	Samsung
17	C29	4.7 uF, 50 V, Ceramic, X7R, 1206	UMK316AB7475KL-T	Taiyo Yuden
18	C30	100 nF, 50 V, Ceramic, X7R, 1206	CC1206KRX7R9BB104	Yageo
19	C32	100 pF, 500 V, Ceramic, NP0, 0805	501R15N101KV4T	Johanson Die
20	C36	0.1 μF (100 nF) ±10% 50V Ceramic Capacitor X7R 0603 (1608 Metric)	GCM188R71H104KA57D	Murata
21	C48	27 uF, ±20%, 100 V, Al Electrolytic, Gen. Purpose, Can, (8mm x 13mm)	EEU-FS2A270B	Panasonic
22	C50	1 nF, 1000 V, Ceramic, X7R, 1206	CC1206KKX7RCBB102	Yageo
23	C51	470 pF, ±10%, 50V, Ceramic, X7R, 0603 (1608 Metric), 0.063" L x 0.031" W (1.60mm x 0.80mm)	CL10B471KB8NFNC	Samsung
24	C53	470 pF, ±10%, 50V, Ceramic, X7R, 0603 (1608 Metric), 0.063" L x 0.031" W (1.60mm x 0.80mm)	CL10B471KB8NFNC	Samsung
25	C54	220 nF 50 V, Ceramic, X7R, 0603	CGA3E3X7R1H224K	TDK Corp
26	C56	1 nF, 200 V, Ceramic, X7R, 0805	08052C102KAT2A	AVX Corp
27	D1	DIODE ULTRA FAST, GPP, 400V, 1A SMA	US1G-13-F	Diodes, Inc
28	D2	Diode 1000 V 1.5A Surface Mount DO-214AA (SMB)	S2M-E3/5BT	Vishay
29	D3	Diode, Schottky, 45 V, 20A, Surface Mount SlimDPAK, TO- 252AE	V20PW45-M3/I	Vishay
30	D10	DIODE, SCHOTKY, 100V, 0.075A, SOD123	BAT46W-TP	Micro Com
31	D13	Diode, Schottky, 120 V, 30 A, Through Hole, TO-220AB	STPS30SM120ST	ST
32	F1	2 A,250V, Slow, TR5	37212000411	Wickman
33	J1	CONN TERM BLOCK 5.08MM 6POS, Screw - Leaf Spring, Wire Guard	OSTTA064163	On Shore Tech
34	J3	3 Position Wire to Board Terminal Block, Horizontal with Board, 0.300" (7.62mm) Through Hole	282845-3	TE Connect
35	L1	CMC 10.3MH 2.0A 0.15OHM WIDE IMP	SSR21NVS-M20103	KEMET
36	L2	FIXED IND, 3.3UH, ±20%,5.2A, 16 MOHM, TH	ELC-10E471L	PANASONIC
37	L4	Custom 200 uH CMC	TSD-5240	Premier Magnetics
38	L5	FIXED IND, 3.3UH, ±20%,5.2A, 16 MOHM, TH	ELC-10E471L	PANASONIC
39	Q1	MOSFET, N-Channel 120 V 12A (Ta), 99A (Tc) 156W (Tc) Surface Mount PG-TDSON-8-7, TDSON-8-7	BSC0302LSATMA1	Infineon
40	Q2	MOSFET, N-Channel 60 V 100A (Tc) 238W (Tc) Surface Mount LFPAK56, Power-SO8, SC-100, SOT-669, SOT-669-4	PSMN4R1-60YLX	Nexperia
41	R1	RES, 47 R, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J470V	Panasonic
42	R2	RES, 0 R, 5%, 1/4 W. Thick Film, 1206	ERJ-8GEY0R00V	Panasonic
43	R5	RES, 47.0 R, 1%, 1/8 W. Thick Film, 0805	ERJ-6ENF47R0V	Panasonic
44	R6	RES, 5.6 R, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J5R6V	Panasonic

45	R7	RES, 61.9 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF6192V	Panasonic
46	R8	RES, 3.32 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF3321V	Panasonic
47	R9	RES, 10.0 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF1002V	Panasonic
48	R10	RES, 3.32 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF3321V	Panasonic
49	R11	RES, 2.00 M, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF2004V	Panasonic
50	R12	Inrush Current Limiter, 2.2 Ohms ±20%, 7 A, 0.591" (15.00mm)	B57237S0229M051	EPCOS - TDK
51	R13	RES, 4.7 R, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ4R7V	Panasonic
52	R14	RES, 10 k, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J103V	Panasonic
53	R16	RES, 2.00 M, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF2004V	Panasonic
54	R35	RES, 26.7 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF2672V	Panasonic
55	R37	RES, 47.0 R, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF47R0V	Panasonic
56	R39	RES, 10 R, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF10R0V	Panasonic
57	R47	RES, 10 R, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ100V	Panasonic
58	R48	RES, 10 R, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ100V	Panasonic
59	R52	RES, 390 k, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J394V	Panasonic
60	R54	RES, 2.67 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF2671V	Panasonic
61	R56	RES, 1.47 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF1471V	Panasonic
62	R57	RES, 47 R, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J470V	Panasonic
63	R63	RES, 2 M, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ205V	Panasonic
64	R66	RES, 10 R, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J100V	Panasonic
65	R72	RES, 22.1 k, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF2212V	Panasonic
66	R75	RES, 5.6 R, 5%, 2/3 W, Thick Film, 1206	ERJ-P08J5R6V	Panasonic
67	R76	RES, 4.7 R, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ4R7V	Panasonic
68	T1	Custom Transformer	POL-INN063	Premier Magnetics
69	U1	InnoMux2-EP, IMX2378F, InSOP-T28D	IMX2378F-H415	Power Integrations
70	VDR1	275 VAC, 45 J, 10 mm, RADIAL	V275LA10P	Littlefuse
71	VR2	Tvs Diode, Unidirectional, 90V Reverse Standoff, 146V Clamp, 10.3A Ipp, Surface Mount SMC (DO-214AB)	SMCJ90A	TAIWAN SEMI
72	VR3	DIODE ZENER 47V 500MW SOD123	MMSZ5261BT1G	ON Semi

Table 2 – Bill of Materials.

7 Transformer (T1) Specification

7.1 Core Information

Ungapped

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N30	2900 +30/–20%	2530		B66317G0000X130
N27	1750 +30/–20%	1520	< 0.59 (200 mT, 25 kHz, 100 °C)	B66317G0000X127
N87	1850 +30/–20%	1620	< 1.60 (200 mT, 100 kHz, 100 °C)	B66317G0000X187
N97	1950 +30/–20%	1700	< 1.40 (200 mT, 100 kHz, 100 °C)	B66317G0000X197

Figure 6 – EF25 Core Information.

7.2 Bobbin Information

Horizontal version (B66208B,B66208R)

Figure 7 – EF25 Bobbin Information.

7.3 Electrical Winding Diagram

Figure 8 – Transformer Electrical Diagram.

7.4 Transformer Electrical Specification

Parameter	Condition	Spec.
Electrical strength	1 second, 60 Hz from pins 1-5 to 6-10.	3000 VAC
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 3 and 5, with all other windings open.	450 μH ±5%
Resonant Frequency	Between pin 3 and 5, other windings open.	1,100 kHz (Min.)
Primary Leakage Inductance	Between pin 3 and 5, with all secondary 6, 7, 8, 9 and 10 shorted.	10 μH (Max.)

Table 3 – Transformer Electrical Specifications.

Winding Stack Diagram 7.5

Figure 9 – Transformer Build Diagram.

List of Materials 7.6

Item	Description
[1]	Core: EF25.
[2]	Bobbin with Cover: EF25, 10pins (5/5).
[3]	Magnet Wire: 0.2 mm, Grade 2 ECW.
[4]	Magnet Wire: 0.4 mm, Grade 2 ECW.
[5]	TEX-E Wire: 0.55 mm, Triple Insulated.
[6]	Tape: 3M 1298 Polyester Film, 1 mil thick, 11.5 mm Wide.
[7]	Tape: 3M 1298 Polyester Film, 1 mil thick, 12 mm Wide.
[8]	Tape: 3M 1298 Polyester Film, 1 mil thick, 8.5 mm Wide.
[9]	Varnish: Recommended, E962-A (alternative: Dolph BC-359).
[10]	Glue: Recommended, H907 (alternative: Devcon 5-minute Epoxy).

Table 4 – Transformer Materials List.

8 Transformer Design Spreadsheet

InnoMux2_EP_031924; Rev.1.5; Copyright Power Integrations 2024	INPUT	INFO	OUTPUT	UNITS	DESCRIPTION
Power Supply Basic Parameters					RDK-1043, TX=EF25, revA4
OUTPUT CONFIGURATION	CV1_CVHV		CV1_CVHV		Output configuration
DC INPUT VOLTAGE	NO		NO		Yes = DC input; No = AC input
VAC MIN			90	V	Minimum AC input voltage
VAC NOM			115	V	Nominal AC input voltage
VAC MAX			265	V	Maximum AC input voltage
PO			50.04	W	Total output power @ nominal load condition
PIN			56.86	W	Input power @ nominal load condition
PTRF			53.79	W	Power processed by the transformer @ nominal load condition
FL			60	Hz	AC line frequency
VMAX			374.8	V	Maximum rectified input voltage
N			0.88		Estimated converter efficiency
Z			0.55		Secondary loss allocation
USE SR	Auto		YES		Use synchronous rectification
Input Section					
CIN	120		120	uF	Input capacitance
VMIN			100.8	V	Minimum DC input voltage calculated at VAC MIN and nominal power
VMIN AVG			115.5	V	Rectified average input voltage calculated at VAC MIN and nominal power
CV1 Specification					
OUTPUT TYPE			CV		Output control type
VOUT CV1	12.00		12.00	V	CV1 voltage
IOUT CV1	1.670		1.670	A	CV1 current
IOUT CV1 [PEAK POWER]	1.670		1.670	A	CV1 current for peak power requirement
CONNECTION TYPE CV1	Auto		SINGLE_WI NDING		Winding connection type
CVHV Specification					
OUTPUT TYPE			CVHV		Output control type
VOUT CVHV	24.00		24.00	V	CVHV voltage
IOUT CVHV	1.250		1.250	A	CVHV current
IOUT CVHV [PEAK POWER]	1.250		1.250	Α	CVHV current for peak power requirement
CONNECTION TYPE CVHV	SINGLE_WI NDING		SINGLE_WI NDING		Winding connection type
Other Design Conditions					
FS TARGET	100.00		100.00	kHz	Target maximum frequency at VMIN and peak power
KP TARGET	0.810		0.810		Minimum KP target at VMIN and peak power
BP MAX			0.33	Т	Maximum allowed peak flux density at VMIN and peak power
MAXIMUM VOR	190.0		190.0	V	Reflected output voltage maximum limit
PI Device Variables					
DEVNAME	Auto		IMX2378F- H415		Device name
BVDSS			750	V	Drain to source breakdown voltage
PACKAGE			InSOP 28D		Device package
DEVICE_MODE	Standard		Standard		Device current limit mode
ILIMIT TOL	5.00		5.00	%	Current limit tolerance
ILIMIT MIN		Info	1.615	А	The specified ILIMIT MIN differs from the datasheet's value.
ILIMIT TYP	1.700	Info	1.700	А	Standard part: 1.6 A. Custom feature code necessary. Please contact local PI Sales Office for further details.

ILIMIT MAX		Info	1.785	А	The specified ILIMIT MAX differs from the datasheet's value.
FS LIMIT			110.00	kHz	Controller maximum switching frequency in steady-state condition
FS ABS MAX			145.00	kHz	Controller absolute maximum switching frequency in transitory condition
RDSON			0.78	Ohm	Drain to source on-time resistance
VDS			0.92	V	On-state drain to source voltage
Transformer Parameters					
Core and Bobbin					
Parameters					
T drumeters					Core type (Compare transformer values
CR TYPE	Custom		Custom		against datasheet as it may differ per manufacturer.)
CR PN	FF25		FF25		Core part number
BB TYPE	EF25		FF25		Bohbin type
			LI 2J		Number of primary pipe in the hebbin
	5		5		Number of primary pins in the bobbin
SECUNDARY PINS	5		5		Number of secondary pins in the bobbin
BW	15.60		15.60	mm	Bobbin width
BFW	3.95		3.95	mm	Bobbin height
AE	52.5		52.5	mm^2	Core cross-sectional area
LE	57.5		57.5	mm	Core magnetic path length
VE	3020.0		3020.0	mm^3	Core volume
AL	1750		1750	nH/T^2	Ungapped core specific inductance
Inductance and Core Gan	1.00		1,00	, · _	
			5.00	0/2	Primany inductance tolerance
			427.7		
			427.7	<u>un</u>	
			450.2	uH	Nominal primary inductance
LP MAX			472.7	uH	Maximum primary inductance
LG			0.490	mm	Estimated gap length
Construction Parameters					
NP	60		60		Primary winding total number of turns
NS SINGLE WINDING	8		8		Single winding output number of turns
					Maximum flux density in steady-state
BM			0.260	Т	conditions (@FS MAX) and nominal power
					condition
				_	Peak flux density in transitory conditions (@ES
BP			0.276	Т	ABS MAX)
					Primary reflected output voltage during CV1
VOR CV1			90.0	V	eutput conduction
					Drive and the stand st
VOR CVHV			187.5	V	Primary reflected output voltage during CVHV
				-	output conduction
VOR MARG CVHV-CV1			97.50	V	Minimum actual VOR margin between CVHV
ACTUAL				-	output and CV2 output reflected voltage
Operating Parameters					
Worst (Nominal Power)					
		Marni			Calculated switching frequency exceeds target.
FS MAX		Wdffii	101	kHz	Increase FS TARGET or relax hard engine
		ng			bounds
					Minimum operating switching frequency across
FS MIN			77	kHz	all tolerance corners
		Warni			Calculated KP is below target. Decrease KP
KP		vvarm	0.763		TAPGET or relay hard engine bounds
		ng	107 F	V	Actual maximum reflected voltage
			10/.5	v	Actual maximum renected voltage
DMAX			0.533		Maximum duty cycle
ION			6.828	us	Maximum controller ON time
TOFF			6.096	us	Minimum controller OFF time
			622	v	Estimated off-state drain to source peak
			0.52	v	voltage (considers 70 V spike)
VDRAIN PLATEAU			562	V	Off-state drain to source plateau voltage
VDS ON			1.00	V	On-state drain to source voltage
IAVG PRIMARY			0.54	Α	Primary switch average current

IAVG DIODE BRIDGE		0.48	A	Average diode bridge current (DC input current)
Peak Currents (Nominal Power)				
PRIMÁRY IP		1.75	Α	Peak primary current @ nominal load condition
CV1 OUTPUT IP		8.63	А	CV1 output peak current @ nominal load condition
CVHV OUTPUT IP		13.14	A	CVHV output peak current @ nominal load condition
RMS Currents (Nominal Power)				
INPUT IRMS		1.17	Α	Input RMS current @ nominal load condition
PRIMARY IRMS		0.79	А	Primary winding RMS current @ nominal load condition
CV1 OUTPUT IRMS		3.35	Α	CV1 RMS current @ nominal load condition
CV1 OUTPUT WINDING IRMS		5.00	A	CV1 winding RMS current @ nominal load condition
CVHV OUTPUT IRMS		3.72	Α	CVHV RMS current @ nominal load condition
CVHV OUTPUT WINDING IRMS		3.72	A	CVHV winding RMS current @ nominal load condition
Ripple Currents (Nominal Power)				
INPUT I RIPPLE RMS		1.07	А	Input capacitor RMS ripple current @ nominal load condition
CV1 I RIPPLE RMS		2.91	А	CV1 output RMS ripple current @ nominal load condition
CVHV I RIPPLE RMS		3.50	А	CVHV output RMS ripple current @ nominal load condition
Bias Parameters				
Primary Bias				
NB	7	7	turns	Primary bias winding turns
V BIAS MIN		9.8	V	Minimum primary bias voltage
V BIAS MAX		21.2	V	Maximum primary bias voltage
VFD BIAS PRI		0.70	V	Primary bias rectifier voltage forward drop
PIV BIAS PRI		64.9	V	Primary bias rectifier peak inverse voltage
R BIAS		12.12	kOhms	Bias resistor
IBPP MIN		0.40	mA	Bias current at V BIAS MIN
IBPP MAX		1.33	mA	Bias current at V BIAS MAX
USE OUTPUT OVP	NO	NO		Use output overvoltage protection on primary bias
Component Ratings				
Secondary Switches				
CVHV RECTIFIER	Diode	Diode		CVHV rectifier type
SR PRV		62.0	V	Synchronous rectifier maximum peak reverse voltage
SR IRMS		5.00	А	Synchronous rectifier RMS current
SF CV1		24.0	v	CV1 selection FET maximum peak reverse voltage
OBD CVHV		24.0	V	CVHV blocking diode maximum peak reverse voltage
OBD VF CVHV		1.00	V	CVHV output blocking diode forward voltage

9 Performance

9.1 Full Load Efficiency vs. Line

Full load efficiency vs. line voltage is shown below. NTC resistor was shorted for all efficiency testing. Tests were performed for combinations of:

- Nominal line voltage (90 V, 115 V, 230 V, 265 V).
- CV1 = 12 V @ 1.67 A.
- CVHV = 24 V @ 1.25 A.

Efficiency vs. Line

Figure 10 – Full Power Efficiency vs. Line Voltage at Room Temperature.

9.2 Efficiency vs. Load

The efficiency vs. load measurements is shown below. NTC resistor was shorted for all efficiency testing Tests were performed for a combination of :

- Nominal line voltage (90 V, 115 V, 230 V, 265 V).
- CV1 = 12 V @ 1.67 A (0 to 100% with 5% load increment).
- CVHV = 24 V @ 1.25 A (0 to 100% with 5% load increment).

Efficiency vs. Load

Figure 11 – Efficiency vs. Load for All Line Inputs, Room Temperature.

9.3 Output Load Regulation

The CV1 output voltage regulation error vs. load are shown below. Results were obtained for combinations of:

- Nominal line voltage (90 V, 115 V, 230 V, 265 V)
- CV1 = 12 V @ 1.67 A (0 to 100% with 5% load increment)
- CVHV = 24 V @ 0 A and 1.25 A

Figure 12 – CV1 Output Voltage Error vs. Output Load, Room Temperature.

The CVHV output voltage regulation error vs. load are shown below. Results were obtained for combinations of:

- Nominal line voltage (90 V, 115 V, 230 V, 265 V)
- CVHV = 24 V @ 1.25 A (0 to 100% with 5% load increment)
- CV1 = 12 V @ 0 A and 1.67 A

Figure 13 – CVHV Output Voltage Error vs. Output Load, Room Temperature.

9.4 No-Load and Standby Input Power ($I_{CVHV} = 0 A$)

The output power vs. input power in standby is shown below. Results were obtained for combinations of:

- Nominal line voltage (90 V, 115 V, 230 V, 265 V)
- CVHV output = 0 A
- CV1 output = 0 mW to 350 mW

Standby power

Figure 14 – Standby Power Consumption vs. Input Line Voltage, Room Temperature.

9.5 Load Transient Response

9.5.1 CV1 Step Load Transient

A load transient test was performed on power supply under the following conditions:

- Line input voltage 90 VAC, 265 V
- CV1 load step between 0 A and 1.67 A (0% and 100% load)
- CVHV = 0 A (0% load); 1.25 A (100% load)

90 VAC, ICV1 = 0 A -> 1.67 A (100%) -> 0 A. ICVHV = 1.25 A. Overshoot: 220 mV (1.8%). Undershoot: -207 mV (-1.7%).

90 VAC, ICV1 = 0 A -> 1.67 A (100%) -> 0 A. ICVHV = 0 A. Overshoot: 139 mV (1.2%). Undershoot: -151 mV (-1.3%).

265 VAC, ICV1 = 0 A -> 1.67 A (100%) -> 0 A. ICVHV = 1.25 A. Overshoot: 190 mV (1.6%). Undershoot: -210 mV (-1.8%).

9.5.2 CVHV Step Load Transient

A load transient test was performed on power supply under the following test conditions:

- Line input voltage = 90 VAC, 265 VAC
- CV1 = 0 A, 1.67 A
- CVHV load step from 63 mA to 1.25 A and back to 63 mA

265 VAC, ICVHV = 63 mA -> 1.25 A -> 63 mA. ICV1 = 1.67 A. Overshoot: 408 mV (1.7%). Undershoot: -502 mV (-2.1%).

9.6 Switching Waveforms

9.6.1 Primary Switch Maximum Voltage

The primary switch (U1) maximum voltage test was performed on power supply under the following test conditions:

- Line input voltage 265 VAC;
- Full load on both outputs:
 - CV1 = 12 V @ 1.67 A
 - CVHV = 24 V @ 1.25 A
- 100 MHz bandwidth selected on the oscilloscope.

 Max(C4)
 600 V

 Acquire 2ms/div,
 625MS/s,
 12.5MPoints,
 Normal
 Trigger Edge ,
 Auto

 CH4:Vpri
 100:1
 100:1
 100.1
 DC1MQ 100M

 Figure 17 – Primary Switch Worst Case Peak Voltage, VPRI_PK = 600 V

9.6.2 SR FET Voltage Waveform

The SR FET (Q1) maximum voltage test was performed on power supply covering below test conditions:

- 265 VAC input line voltage
- CV1 (12 V) load step from 0 A to 1.67 A
- CVHV (24 V) full load to 1.25 A
- 100 MHz bandwidth selected on the oscilloscope.

	100 1					
Acquire 10ms/div, 125MS/s, 12.5MPoints, Normal			mal	Trigger Edge , Normal		
	CH2:VSR		CH4:Vpri		CH8:lcv1	
	10:1		100:1		10A:1V	
	50.0 V/div		200 V/div		1.00 A/div	
	DC1MΩ 100M		DC1MΩ 100M		DC1MΩ 2M	
Figure 18 – SR FET Worst Case Peak Voltage, V _{SR PK} = 108 V						

9.6.3 Selection FET Voltage Waveform

The Selection FET (Q2) maximum voltage test was performed on power supply covering below test conditions:

- 265 VAC input line voltage
- Startup with full load on both outputs:
 - CV1 = 12 V @ 1.67 A
 - CVHV = 24 V @ 1.25 A
- 100 MHz bandwidth selected on the oscilloscope.

9.6.4 CVHV Diode Reverse Voltage Waveform

The CVHV Diode (D3) maximum reverse voltage test was performed on the power supply under the following test conditions:

- 265 VAC input line voltage
- Start-up with full load on both outputs:
 - CV1 = 12 V @ 1.67 A
 - CVHV = 24 V @ 1.25 A
- 100 MHz bandwidth selected on the oscilloscope.

9.6.5 BPP Rectifier Diode Reverse Voltage Waveform

A BPP rectifier diode (D1) maximum reverse voltage test was performed on the power supply under the following test conditions:

- 265 VAC input line voltage
- Start-up with full load on both outputs:
 - CV1 = 12 V @ 1.67 A
 - CVHV = 24 V @ 1.25 A
- 100 MHz bandwidth selected on the oscilloscope.

9.6.6 Primary Switching Frequency

The primary switching frequency of the converter varies depending on the line and load conditions. Frequency was measured under maximum load at minimum line input (90 VAC). Maximum switching frequency occurs at the minimum bulk voltage with a maximum instantaneous frequency of 90.3 kHz. Under the same conditions over a mains cycle, the average switching frequency was 88.6 kHz.

9.6.7 Maximum Voltage Stress

The voltage waveforms on each key component, i.e. MOSFETs & diodes, were checked to confirm that maximum voltage stress was below the component ratings. The maximum voltage stress can happen under different combinations of input mains voltages or and output loads, and during startup up or during transient conditions steps. Most applications require $10\% \sim 20\%$ margin between the maximum voltages and component Abs-max. ratings. The below table shows voltage stress on the key components under worst-case conditions:

Common on t	Davt Number	Component	Maximum Voltage Stress		
Component	Part Number	Rating [V]	[V]	[%]	
InnoMux2 (U1)	IMX2378F-H415	750	600	80%	
SR FET (Q1)	BSC0302LS	120	108.0	90%	
Selection FET (Q2)	PSMN4R1-60YL	60	22.0	37%	
CVHV Diode (D3)	V20PW45	45	28.1	62%	
BPP Diode (D1)	US1G	400	112	28%	

Table 5 – Maximum Voltages on the key components.

9.7 Start-Up

9.7.1 Full Load Start-up

A full load start-up test was performed on power supply under the test conditions shown below.

- Each nominal line voltage (90 V, 115 V, 230 V, 265 V)
- Full load on both outputs:
 - CV1 = 12 V @ 1.67 A
 - CVHV = 24 V @ 1.25 A

9.7.2 No-Load Start-up

A no load start-up test was performed on power supply under the following test conditions

- Each nominal line voltage (90 V, 115 V, 230 V, 265 V)
 - No load on either output:
 - CV1 = 12 V @ 0 A
 - CVHV = 24 V @ 0 A

9.8 Output Ripple Measurements

9.8.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe was utilized to reduce noise pick-up. The probe adapter is shown in the figures below. It includes a coaxial cable with two parallel capacitors connected to the points of measurement. The capacitors include a 0.1 μ F / 100 V ceramic type and a 10 μ F / 50 V aluminum electrolytic type. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be ensured.

End Cap and Ground Lead Removed.

Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)

Figure 25 – Oscilloscope Probe Prepared for Ripple Measurement.

9.8.2 CV1 and CVHV Output Ripple

The CV1 and CVHV output ripple are tested under the following conditions:

- Nominal line voltage (90 V, 115 V, 230 V, 265 V)
- CV1 = 12 V @ 1.67 A
- CVHV = 24 V @ 1.25 A
- 20 MHz bandwidth selected on the oscilloscope

RDR-1043 50 W InnoMux2-EP Dual Output Power Supply

9.9 Thermal Performance

There are no external heatsinks required for this design. PCB copper is used for cooling of the InnoMux2-EP IC. No forced air-cooling was deployed during any test. The temperatures of the hottest component in the assembly are shown below.

Figure 27 – Thermal Image, 90 VAC, Full Power.

(a) Top View (b) Bottom View **Figure 30** – Thermal Image, 265 VAC, Full Power.

Component	Description	Component Temperatures [°C]					
Component	Description	Vin = 90 V	Vin = 115 V	Vin = 230 V	Vin = 265 V		
U1	InnoMux2	71.5	62.5	57.3	60.6		
Q2	Selection FET	60.5	57.8	61.2	64.2		
D3	CVHV Diode	59.5	58.8	60.6	62.9		
Q1	SR FET	60.1	58.2	59.7	63.8		
BR1	Bridge	69.4	61.9	46.5	47.2		
D13	SR snub diode	56.8	54.5	58.0	57.8		
T1	Trf winding	75.6	74.4	83.7	85.1		
T1	Trf core	71.6	69.2	78.5	79.5		
R12	NTC	79.1	70.6	53.1	50.4		
C3	Bulk Capacitor	49.6	44.5	41.1	41.1		
	Ambient	24.4	23.9	23.7	22.0		

Table 6 - Component Temperatures, 90 VAC, 115 VAC, 230 VAC and 265 VAC, Full Power.

9.10 Audible Noise

Audible noise vs. load measurements are shown below. These were obtained for combinations of:

- Low and high mains line voltages (115 V, 230 V).
- CV1 = 12 V @ 1.67 A (0 to 100% with 3% load increment).
- CVHV = 24 V @ 1.25 Å (0 to 100% with 3% load increment).
- NTC resistor and input CMCs shorted.

Acoustic Noise - Across Load Range

Figure 31 – Audible Noise in Operation mode.

The Audible noise vs. output power at standby mode measurements are shown below. These were obtained for combinations of:

- Low and high mains line voltages (115 V, 230 V).
- CVHV output = 0 A
- CV1 output = 0 mW to 250 mW
- NTC resistor and input CMCs were shorted.

Acoustic Noise - Standby Mode

Figure 32 – Standby Power Consumption vs. Input Line Voltage, Room Temperature.

9.11 Conducted Emissions

Conducted emissions test results are shown below. These were obtained under the following conditions:

- Low and high mains line voltages (115 V, 230 V).
- CV1 = 12 V @ 1.67 A.
- CVHV = 24 V @ 1.25 A.
- NTC resistor shorted.

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)			(dB)
0.170000		49.72	54.96	5.24	10.000	L1	ON	20.3
0.170000	56.23		64.96	8.73	10.000	Ν	ON	20.3
0.260000	50.23		61.43	11.20	10.000	Ν	ON	20.3
0.260000		46.44	51.43	4.99	10.000	Ν	ON	20.3
0.345000	44.40		59.08	14.68	10.000	L1	ON	20.4
0.345000		40.91	49.08	8.17	10.000	L1	ON	20.4
29.855000		42.54	50.00	7.46	10.000	Ν	ON	20.4
29.855000	48.01		60.00	11.99	10.000	Ν	ON	20.4
29.875000		42.56	50.00	7.44	10.000	Ν	ON	20.4
29.875000	48.04		60.00	11.96	10.000	Ν	ON	20.4

Figure 33 – Conducted Emission result @ Vin = 115 VAC

Figure 34 – Conducted Emission result @ Vin = 230 VAC

10 Revision History

Date	Author	Revision	Description & Changes	Reviewed
10-May-24	YL	A Initial Release.		Apps & Mktg
22-Oct-24	YL	В	Updated schematic and major updates on contents	Apps & Mktg
23-Nov-24	YL	С	BOM Update	Apps & Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may be based on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.power.com</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperLCS, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2022, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail:_chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com

GERMANY

(AC-DC/LED/Motor Control Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)

HellwegForum 3 59469 Ense Germany Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 e-mail: indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

UΚ

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com

