Design Example Report | Title | 400 W 3-Phase Inverter Using
BridgeSwitch TM BRD1267C and
LinkSwitch TM -TN2 LNK3204D in FOC
Operation | |---------------|---| | Specification | 340 VDC Input, 400 W Continuous 3-Phase Inverter Output Power, 1.2 A _{RMS} Continuous Motor Phase Current | | Application | High-Voltage Brushless DC (BLDC) Motor Drive | | Author | Applications Engineering Department | | Document No. | DER-870 | | Date | June 16, 2022 | | Revision | 1.2 | ### **Summary and Features** - BridgeSwitch high-voltage half-bridge motor driver - Integrated 600 V FREDFETs with ultra-soft, fast recovery diodes - No heat sink - Fully self-biased operation simplifies auxiliary power supply but can also support external bias operation as needed - High-side and low-side cycle-by-cycle current limit - Two level device over-temperature protection - High-voltage bus monitor with four undervoltage threshold and one overvoltage threshold - System level temperature monitor - Single wire status update communication bus - Supports any microcontroller (MCU) for sensorless field-oriented control (FOC) through the signal interface - Instantaneous phase current output signal for each BridgeSwitch - Fault reporting for each device through the FAULT BUS pin on the interface - +5 V supply ready through the interface ### PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/. | T | able of | f Contents | | |---|--------------|--|------| | 1 | Intro | oduction | 5 | | 2 | Inve | erter Specification | 7 | | 3 | | ematic | | | 4 | Circ | ruit Description | . 12 | | | 4.1 | Three-Phase BridgeSwitch Inverter | | | | 4.2 | Input Stage | | | | 4.3 | BridgeSwitch Bias Supply | | | | 4.4 | PWM Input | | | | 4.5 | Cycle-by-Cycle Current Limit | | | | 4.6 | System Underoltage (UV) and Overvoltage (OV) Protection | | | | 4.7 | System Level Temperature and Monitoring | | | | 4.8 | Fault Bus | | | | 4.9 | Device ID | | | | 4.10 | Microcontroller (MCU) Interface | | | | 4.11 | External Supply | | | | 4.12 | Three-Phase Motor Interface | | | | | Auxiliary Power Supply Circuit | | | | 4.14 | +5 V Linear Regulator | | | | 4.15 | Current Sense Amplifier | | | 5 | | Ited Circuit Board Layout | | | 6 | | of Materials | | | 7 | | formance Data | | | ′ | 7.1 | Start-Up Operation | | | | 7.1. | · | | | | 7.1. | · | | | | | The state of s | | | | 7.2. | , | | | | 7.2. | · · · · · · · · · · · · · · · · · · · | | | | 7.2. | | | | | 7.2. | e , | | | | 7.2. | | | | | | Thermal Performance | | | | 7.3 | | | | | 7.3. | · · · · · · · · · · · · · · · · · · · | | | | 7.3.
7.3. | 5 , | | | | 7.3. | , | | | | | | | | | 7.3. | • | | | | | | | | | | .3.5.2 External Supply Mode | | | | 7.4 | No-Load Input Power Consumption | | | | 7.5 | Efficiency | | | | 7.5. | | | | | 7.5. | .2 Efficiency Table at External Supply Mode | 52 | | | 7.6 | Device and System Level Protection / Monitoring | 33 | |---|------|---|----| | | 7.6. | • | | | | 7.6. | .2 Thermal Warning | 34 | | | 7.6. | 3 Thermal Shutdown | 35 | | | 7.6. | 4 Undervoltage (UV) | 36 | | | 7.6. | .5 Overvoltage (OV) | 37 | | | 7.6. | , | | | | 7.7 | Abnormal Motor Operation Test | | | | 7.7. | ·- · · · · · · · · · · · · · · · · · · | | | | 7.7. | | | | | 7.7. | - 3 | | | 8 | App | endix | | | | 8.1 | | | | | 8.1. | | | | | 8.1. | - · · · · · · · · · · · · · · · · · · · | | | | 8.1. | - 3 | | | | 8.2 | Recommended Start-up Sequence | | | | 8.3 | Status Word Encoding | | | | 8.4 | Suggested Microcontroller Action to BridgeSwitch Fault Conditions | | | | 8.5 | Inverter Output Power Measurement | | | | 8.6 | Current Capability vs. Ambient Temperature | | | | 8.7 | Efficiency Curve at Different Switching Frequency | | | | 8.8 | Test Bench Set-up | | | _ | 8.8. | - 4- F | | | 9 | Rev | ision History | 53 | ### **Important Note:** During operation, the reference design board is subject to hazards including high voltages, rotating parts, bare wires, and hot surfaces. Energized DC bus capacitors require time to discharge after DC input disconnection. All testing should use an isolation transformer to provide the DC input to the board. ### 1 Introduction This document describes a 400 W, 97% efficient, three-phase inverter for a high-voltage brushless DC (BLDC) motor application using three BridgeSwitch BRD1267C devices. The design shows the device performance, internal level monitoring, system level monitoring, and fault protection facilitated by the high level of integration of the BridgeSwitch half-bridge motor driver IC. A high-voltage, low component count buck converter utilizing a LinkSwitch-TN2 LNK3204D device supplies the current sense amplifier and optionally provides external bias for the BridgeSwitch devices. Also included in this report are the inverter specifications, schematic, bill of materials, printed circuit board (PCB) layout, performance data, and test setup. The provided waveforms and design performance are based on a sensorless field-oriented control (FOC) method employing the Space Vector Modulation (SVM) scheme commonly referred to as three-phase modulation in this document. Figure 1 - Populated Circuit Board Top View. Figure 2 - Populated Circuit Board Bottom View. # 2 Inverter Specification The table below provides the electrical specification of the three-phase inverter design. The result section provides actual performance data. | Description | Symbol | Min | Тур | Max | Unit | Comment | |---|-----------------------|--------------|------|-----|------------------|--| | Input | | | | | | | | Voltage | V _{IN} | 270 | 340 | 365 | ٧ | 2-wire DC Input. | | Current | ${ m I}_{ m IN}$ | | 1.2 | | A _{RMS} | RMS. | | Power | P _{IN} | | 412 | | W | At Efficiency = 97%. | | Output | | | | | | | | Power | Роит | | 400 | | W | Inverter Output Power. | | Motor Phase Current | I _{MOT(RMS)} | | 1.2 | | A _{RMS} | Continuous RMS per Phase. | | Inverter Peak Output Current | I _{INT(PK)} | | 4.1 | | Α | Inverter Peak Current. | | PWM Carrier Frequency ¹ | f _{PWM} | | 12 | 16 | kHz | Three-Phase FOC Modulation. | | Efficiency | η | | 97 | | % | Self-Supplied Operation. | | Output Speed | ω | | 5000 | | RPM | Motor Speed at 400 W Inverter Output Power. | | Environmental | | | | | | | | Ambient Temperature | Тамв | -20 | 29 | 65 | °C | Average Ambient Temperature. Closed-case. Free Convection. | | Device Case Temperature | T _{PACKAGE} | | 92 | | °C | 1.2 A _{RMS} Phase Current in Self-Supplied Operation. | | System Level Monitoring | | | | | | | | DC Bus Sensing | | | | | | | | OV Threshold | V _{OV} | | 422 | | ٧ | Reported through | | 1 st UV Threshold | V _{UV100} | | 247 | | V | Status Communication Bus | | 2 nd UV Threshold | V _{UV85} | | 212 | | V | (FAULT Pin). | | 3 rd UV Threshold | V _{UV60} | | 177 | | V | | | 4 th UV Threshold | V _{UV55} | | 142 | | V | | | Over Current Protection ² | I_{OCP} | | 4.1 | | A _{PK} | At XL/XH = 44.2 kΩ | | System Warning Temperature ³ | T _{SYS} | - J D\A/\A 4 | 90 | | °C | with a tawal a wall | Notes: 1. 20 kHz is the maximum recommended PWM frequency with self-supply or with external supply.
Table 1 – Inverter Specification. ^{2.} This can be manually configured by adjusting the value of the XL/XH resistors. For BRD1267C, the maximum current protection level is 4.1 A at an XL/XH resistance of 44.2 $k\Omega$. ^{3.} Sensed through an external thermistor, the temperature threshold depends on the chosen NTC and its location (requires verification in the final application). # 3 Schematic **Figure 3** – BridgeSwitch Three-Phase Inverter Circuit Schematic. **Figure 4** – Microcontroller Interface Schematic. **Figure 5** — External Supply Schematic. **Figure 6** —Three-Phase Motor Interface Schematic. Figure 7 – Auxiliary Circuit Schematic. **Figure 8 –** +5 V Linear Regulator Schematic. Figure 9 – Current Sense Amplifier Circuit Schematic. # 4 Circuit Description The overall schematic shows a three-phase inverter utilizing three BridgeSwitch BRD1267C devices. The circuit design drives a high-voltage, three-phase, brushless DC (BLDC) motor employing field-oriented control (FOC) for the motor drive. The BridgeSwitch IC combines two 600 V, N-channel power FREDFETs with their corresponding gate drivers into a low profile surface mount package. The BridgeSwitch power FREDFET features an ultrasoft, fast recovery diode ideally suited for inverter drives. Both drivers are fully self-supplied eliminating the need for the system power supply to provide gate drive power. A LinkSwitch-TN2 LNK3204D device in a high-voltage buck converter provides an optional +17 V supply for the BridgeSwitch device (external bias) and input DC voltage for the +5 V linear regulator supplying the current sense amplifier circuit. In addition, the BridgeSwitch IC incorporates internal fault protection and system level monitoring. Internal fault protection includes cycle-by-cycle current limit for both FREDFETs and a two level thermal overload protection. On the other hand, system level monitoring includes high-voltage DC bus sensing with multi-level undervoltage thresholds and one overvoltage threshold. The BridgeSwitch IC can also be configured using external sensors such as a thermistor for system temperature monitoring. A single wire open drain bus communicates all detected fault or change of status to the system microcontroller. ### 4.1 Three-Phase BridgeSwitch Inverter The three BridgeSwitch devices U1, U2, and U3 form the three-phase inverter. The inverter output connects to the three-phase BLDC motor through connectors J1, J2, and J3. ## 4.2 *Input Stage* The input stage consists of terminals J6 and J7, input diode D6, and bulk capacitor C27. Terminals J6 (positive terminal) and J7 (negative terminal) serve as connectors for the high-voltage DC bus. The bulk capacitor C27 minimizes the path for the high-voltage DC input from the supply to the board. It is protected by input diode D6 from reversed DC voltage in the case of the DC input connections being swapped. # 4.3 **BridgeSwitch Bias Supply** Capacitors C19, C21, and C23 provide self-supply decoupling for the integrated low-side controller and gate driver. An internal high-voltage current source recharges these capacitors as soon as the voltage level starts to dip. On the other hand, capacitors C18, C20, and C22 provide self-supply decoupling for the integrated high-side controller and gate driver. Internal high-voltage current sources recharge these capacitors whenever the half-bridge point of the respective device drops to the low-side source voltage level (i.e. the low-side FREDFET turns on). ### 4.4 **PWM Input** Input PWM signals PWML_U, PWMH_U, PWML_V, PWMH_W, PWMH_W, control the switching states of the integrated high-side and low-side power FREDFETs. The system microcontroller provides the required PWM signal and desired switching frequency. ### 4.5 *Cycle-by-Cycle Current Limit* Resistors R28, R34, R41, R27, R33, and R40 set the cycle-by-cycle current limit level for the integrated low-side and high-side power FREDFETs. A selected value of 44.2 k Ω sets the current limit to 100% of the default level or 4.1 Apk. ## 4.6 System Underoltage (UV) and Overvoltage (OV) Protection The BridgeSwitch device (U1) monitors the DC bus voltage through resistors R21 (3 M Ω), R22 (2 M Ω), and R23 (2 M Ω). The combined resistance of 7 M Ω sets the undervoltage thresholds to 247 V, 212 V, 177 V, and 142 V. The bus overvoltage threshold is at 422 V. The FAULT pin reports any detected bus voltage fault condition. # 4.7 System Level Temperature and Monitoring The BridgeSwitch device (U3) monitors the system temperature through thermistor RT1 connected to the SM pin. Resistor R36 tunes the threshold for a system level fault of 90 °C. The device reports a detected status change of the externally set system level temperature through the FAULT pin. ### 4.8 Fault Bus The BridgeSwitch devices (U1, U2, and U3) report any detected internal and system status change through pin 8 of connector J4. The system microcontroller can take action in accordance to the status update reported by the device. For instance, the action could be inverter shutdown, latch, restart, warning, etc. ### 4.9 Device ID Each BRD1267C assigns itself a unique device ID through the pin 11 connection (ID pin). The pin can be floating, connected to the SG pin, or connected to the BPL pin. The device ID allows the specific device flagging a fault to communicate its physical location to the system microcontroller. # 4.10 Microcontroller (MCU) Interface Connectors J4 and J5 serve as an interface between the system microcontroller and the BridgeSwitch three-phase inverter which contains the following signal: - **FAULT_BUS** Pin dedicated for fault reporting of all BridgeSwitch devices. - **GND** Common ground interface between the microcontroller and the inverter board. - PWMH_U, PWML_U, PWMH_V, PWML_V, PWMH_W, and PWML_W PWM input signal interface from the system microcontroller to the BridgeSwitch device. - +5 V Voltage supply pin for the microcontroller as needed. - **SM** Configurable system monitoring pin for the BridgeSwitch device (U2). - Curr_fdbkU, Curr_fdbkV, Curr_fdbkW Current feedback information needed by the microcontroller (MCU). This signal directly comes from the inverter current sense resistor passing through the current sense amplifier circuit. - **IPH_U, IPH_V, IPH_W** IPH pin output containing instantaneous phase current information of the low-side power FREDFET Drain-to-Source current from each BridgeSwitch device. ### 4.11 External Supply Components R43, R44, R45, R46, R47, R48 and diodes D3, D4, and D5 are responsible for providing external supply to the BridgeSwitch BPL/BPH pin through device U4. External supply operation is optional for applications that require lower inverter no-load input power or operate at elevated ambient temperatures. Otherwise, these resistor and diode components can be depopulated. If depopulated, BPL/BPH supply will be drawn internally through the BridgeSwitch device (self-supply). ### 4.12 Three-Phase Motor Interface Connectors J1, J2, and J3 are mechanical connectors that directly connect the BridgeSwitch three-phase inverter to the BLDC motor. ### 4.13 Auxiliary Power Supply Circuit Device U4 (LNK3204D) is a high-side buck switcher IC responsible for providing optional +17 V supply for the BPL/BPH (external bias) and +5 V linear regulator. It directly steps down the high input DC voltage to the desired low voltage output. For more information about LNK3204D, please refer to the data sheet through the following link: https://ac-dc.power.com/design-support/product-documents/data-sheets/linkswitch-tn2-data-sheet/ # 4.14 +5 V Linear Regulator Device U5 (MCP1804T) is +5 V linear regulator that provides DC supply to the current sense amplifier circuit. It can also be used to supply an external microcontroller through pin 8 of connector J5. # 4.15 *Current Sense Amplifier* Components U6B, U6C, and U6D are current sense amplifiers which receive data from the sense resistors R29, R35, and R42. The current information from these sense resistors are offset to 2.5 VDC level in the current sense op-amp output pins. The U6A circuit provides the 2.5 VDC offset reference voltage. The current information from the outputs of U6B, U6C, and U6D are sent to the microcontroller (MCU) which modulates the PWM input to the BridgeSwitch inverter maintaining the desired power and RPM. Note: U6A, U6B, U6C, and U6D are op-amps in one IC package (Quad op-amp, U6) # **5** Printed Circuit Board Layout Figure 10 - Printed Circuit Board Layout Top View. ### Note: - 1. The overall PCB dimension is 125 mm X 85 mm (L X W). - 2. The inverter PCB dimension is 90 mm x 60 mm (L X W) in black rectangle. - 3. PCB Specifications: - Board thickness: 0.047 inches - Board material: FR4Copper weight: 2 oz Figure 11 – Printed Circuit Board Layout Bottom View. ### Note: - 1. The overall PCB dimension is 125 mm X 85 mm (L X W). - 2. The inverter PCB dimension is 90 mm x 60 mm (L X W). - 3. PCB Specifications: - Board thickness: 0.047 inches - Board material: FR4Copper weight: 2 ozNo. of layers: 2 # 6 Bill of Materials | 1 1 C.1 100 pf. ±10%, 50 V, Ceramic, XPR, 0603 CGA3E2X/R1H104K080AA TDK C.2181106K0QNNNE Samsung 0805 ±10%, 16 V, X7R, Ceramic, SMT, MLCC C1281106K0QNNNE Samsung 0805 ±10%, 16 V, X7R, Ceramic, SMT, MLCC C1281106K0QNNNE Samsung 0805 ±10%, 16 V, X7R, Ceramic, SMT, MLCC C1281106K0QNNNE Samsung 0805 ±10%, 16 V, X7R, Ceramic, SMT, MLCC C1281106K0QNNNE Samsung 0805 ±10%, 16 V, X7R, Ceramic, CMD, 0805 C0805C1011GACTU Kemet V128 | Item | Qty | Ref Des | Description Mfg Part Numb | | Mfg |
--|------|-----|--|--|---|--------------------| | 2 2 CZ,OB 10 μ, ± ±0%, 16 V, X/R, Ceramic, SMT, MLCC CL218106KOQNNNE Samsung 3 1 C3 22 μ, 50 V, Electroykic, (S x 11) UPW1H220MDD Nichicon 4 3 C4,C10,C15 100 pF, 100 V, Ceramic, COG, 0005 C080SC10111GACTU Kernet 5 3 C5,C11,C16 470 pF 50 V, Ceramic, COG, 0005 C1608C0G2A1021 TOK 6 3 C6,C12,C17 1000 pF, 100 V, Ceramic, NP0, 0603 C1608C0G2A1021 TOK 7 2 C7,C9 1 µF, 50 V, Ceramic, XPR, 0603 C1608C0G2A1021 TOK 8 1 C13 1 µF, 10 V, Ceramic, XPR, 0603 CL108105K08VPNC Samsung 9 1 C14 100 nF, 25 V, Ceramic, XPR, 0603 CV0609310H0X02AC TDK 10 3 C18,C20,C22 47 nF, ±10 V, Ceramic, XPR, 0603 CV060910H0X02AC TDK 11 3 C19,C21,C25 20 nF, 500 V, Ceramic, XPR, 0603 CV060410H0X02AC TDK 10 3 C18,C20,C22 47 nF, ±10 V, Ceramic, XPR, 0603 CV060410H0X02AC | | | | | | - | | 3 | 2 | 2 | | 10 μF, ±10%, 16 V, X7R, Ceramic, SMT, MLCC | | | | 4 3 C-S.C.11.C.15 100 pF, 100 V, Ceramic, COG, 0805 C080SC1011JGACTU Kemet 5 3 CS.C.11.C.16 470 pF 50 V, Ceramic, CXPO, 0603 V106034471JXAAC Vishay 6 3 CS.C.11.C.17 1000 pF, 100 V, Ceramic, XPR, 0603 C1608C0G2A102J TDK 7 2 C.7.C.9 1, pF 16 V, Ceramic, XPR, 0603 C1018DISKOSWPNC Samsung 9 1 C14 100 nF, 25 V, Ceramic, XPR, 0603 C108DISKOSWPNC Samsung 10 3 C18,C20.C23 1, pF 16 V, Ceramic, XPR, 0603 C108DISKOSWPNC Samsung 11 3 C19,C21.C23 1, pF 16 V, Ceramic, XPR, 0603 CGASEIX/R1EGISKSBASE TDK 12 3 C24,C25,C26 1220 n.F, 500 V, Ceramic, XPR, 0603 CGASEIX/R1EGISKOBBAE TDK 13 1 C27 100 µF, 400 V, Electrolytic, Low ESR, (16 x 30) EPAG401EL101ML30S Nippon Chemi-Con 14 1 D1 600 V, 1 A, Rectifier, Glass Passivated, OF PLAN CONTROL DFLR1600-7 Diodes, Inc. 15 1 D2 | 3 | 1 | C3 | | UPW1H220MDD | Nichicon | | 5 3 C5,C11,C16 470 pF 50 V, Ceramic, COG/NPO, 0603 VJ0603A471,MAAC Vybhay 6 3 C6,C12,C17 1000 pF, 100 V, Ceramic, NPO, 0603 C1608COG2A102J TDK 7 2 C7,C9 1 jr F, 50 V, Ceramic, NPO, 0603 C1608COG2A102J AVX 8 1 C13 1 jr F, 50 V, Ceramic, XPR, 0603 C1008JSK0PMC Samsung 9 1 C14 100 nF, 25 V, Ceramic, XPR, 0603 V10003Y104KXXAC TDK 10 3 C18,C20,C22 4.7 μF, ±1096, 25 V, Ceramic, XPR, 1206 GCM31CR71E475KA55L Murata 11 3 C18,C20,C22 4.7 μF, ±1096, 25 V, Ceramic, XPR, 1206 GCM31CR71E475KA55L Murata 12 3 C24,C25,C26 220 nF, 500 V, Ceramic, XPR, 1812 C1812C224KCRACTU Kemet 13 1 C27 100 μF, 400 V, Electrolytic, Low ESR, (16 x 30) DFLR600-7 Diodes, Inc. 14 1 D1 600 V, 12 A, Rectifier, Glass Passivated, Polytic Processor DFLR600-7 Diodes, Inc. 15 1 D2 600 V, 12 A, S | | | | | | | | 6 3 C6,C12,C17 100 Op F, 100 V, Ceramic, NPO, 0603 C1609C0G2A102J TDK 7 2 C7,C9 1 µF, 50 V, Ceramic, XSR, 0805 08055D105KAT2A AVX 8 1 C13 1 µF 16 V, Ceramic, XSR, 0805 CL10B105KO8VPNC Samsung 9 1 C14 100 nF, 25 V, Ceramic, XSR, 1206 CK10K16XSAC TDK 10 3 C18,C2Q.C23 1 µF, ±10%, 25 V, Ceramic, XSR, 1206 GCM316XP14F3KS45 Murata 11 3 C19,C2L,C23 1 µF, ±10%, 25 V, Ceramic, XSR, 1603 CGA3E1X7R1£105K080AE TDK 12 3 C24,C25,C26 220 nF, 500 V, Ceramic, XFR, 1812 CERAGECRACTU Kenet 13 1 C27 100 µF, 400 V, Electrolytic, Low ESR, (16 x 30) EPAG401EL101M120S Nippon Chemi-Con 14 1 D1 600 V, 1 A, Rectifier, Glass Passivated, POWERD123 DFLR1600-7 Diodes, Inc. 15 1 D2 600 V, 1 A, Septer Fast, 35 ns, DO-214AC, SMA ES21-LTP Micro Commercial 16 3 D3, Jb, 50 600 V, 1 A, Fa | | | | | | | | 7 2 C7,C9 1, F, 50 V, Ceramic, XSR, 0805 08055DIDSKATZA AVX 8 1 C13 1, F 16 V, Ceramic, XSR, 0603 CLI0BISSKO8VPWC Samsung 9 1 C14 100 nF, 25 V, Ceramic, XZR, 0603 VJ0603Y104KXXAC TDK 10 3 C18,C21,C23 1, F, ±10%, 25 V, Ceramic, XZR, 1206 GCM31CR71E47SK455L Murata 11 3 C24,C25,C26 220 nF, 500 V, Ceramic, XZR, 1812 C1812C224KCRACTU Kemet 13 1 C27 100 nF, 400 V, Electrolytic, Low ESR, (16 x 30) EPAG601ELL101M_30S Nippon Chemi-Con 14 1 D1 600 V, 1 A, Rectifier, Glass Passivated, PFAG601ELL101M_30S Nippon Chemi-Con 15 1 D2 600 V, 1 A, Super Fast, 35 is, 500-2144 UFM15PL-TP Micro Commercial 16 3 D3,04,DS 600 V, 1 A, Super Fast, 35 is, 500-2144C, SMA RS11-15-F Diodes, Inc. 17 1 D6 600 V, 2 A, Super Fast, 35 is, 500-2144C, SMA ES21-LTP Micro Commercial 18 3 J1,12,31 CONN QC TA | | | | | | | | 8 1 C13 1 μF 16 V, Ceramic, X7R,0603 C1.10B10SKO8VPNC Samsung 9 1 C14 100 nF, 25 V, Ceramic, X7R, 0603 V30603Y104KXXAC TDK 10 3 C18,C20,C22 4.7 μF, ±10%, 25 V, Ceramic, X7R, 1812 GCM31CR71E475KAS5. Murata 11 3 C19,C21,C23 1 μF, ±10%, 25 V, Ceramic, X7R, 0603 CGA3E1X7R1E105K080AE TDK 12 3 C24,C25,C26 220 nF, 500 V, Ceramic, X7R, 1812 C1812C224KCRACTU Kemet 13 1 C27 100 μF, 400 V, Electrolytic, Low ESR, (16 x 30) EPAG401ELL101ML30S Nippon Chemi-Con 14 1 D1 600 V, 1 A, Ditrafast Recovery, 250 ns, SMA DFLR1600-7 Diodes, Inc. 15 1 D2 600 V, 1 A, Fast Recovery, 250 ns, SMA RS13-13-F Diodes, Inc. 16 3 D3,D4,D5 600 V, 1 A, Fast Recovery, 250 ns, SMA RS13-13-F Diodes, Inc. 17 1 D6 600 V, 2 A, Super Fast, 35 ns, D0-214AC, SMA ES2-LTP Micro Commercial 18 3 1,1,2,33 | | | | | | | | 9 | | | | | | | | 10 | | | | , , , | | | | 11 3 C19,C21,C23 1 F, ±10%, 25 V, Ceramic, X7R, 0603 CGA3E1X7R1E105K080AE TDK 12 3 C24,C25,C26 220 nf, 500 V, Ceramic, X7R, 1812 C1812C24KCRACTU Kemet 13 1 C27 100 µf, 400 V, Electrolytic, Low ESR, (16 x 30) EPAG401EL1101M130S Nippon Chemi-Con 14 1 D1 600 V, 1 A, Rectifier, Glass Passivated, POWERD1123 DFLR1600-7 Diodes, Inc. 15 1 D2 600 V, 1 A, Ultrafast Recovery, 250 ns, SMA R513-13-F Diodes, Inc. 16 3 D3,D4,D5 600 V, 1 A, Ultrafast Recovery, 250 ns, SMA R513-13-F Diodes, Inc. 17 1 D6 600 V, 2 A, Super Fast, 35 ns, D0-214AC, SMA E523-LTP Micro Commercial 18 3 31,J2,J3 CONN QC TAB 0.250 SOLDER 1287-ST KeyStone 19 2 13,J5 8 Pos (1 x 8) header, 0.1 plitch, Vertical, Au P9101-08-032-1 Protectron 20 1 J6 Test Point, BLK, Thru-hole Mount S010 Keystone 21 1 J7 Test Point, BLK, Thru-hole Mount S011 Keystone 22 1 L1 680 µf, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ433V Panasonic 24 1 R2 RES, 2.49 kΩ, 1/8, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1/8, 1/8 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 1206 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-3EKF1001V Panasonic 30 6 R24,R25,R30 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 31 4 R26,R32,R39 RES, 10 Ω, 5%, 1/10 W, Thick Film, 1206 ERJ-BENF2004W Panasonic 32 3 R27,R33,R40 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 33 3 R28,R34,R41 RES, 42 kΩ, 1/8, 1/16 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 34 3 R29,R35,R42 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 35 1 R36 R85, 10 R, 5%, 1/10 W, Thick Film, 0603 ERJ-3EKF122V Panasonic 34 3 R2 | | | | , , , , | | | | 12 3 C24,C25,C26 220 nF, 500 V, Ceramic, X7R, 1812 C1812C224KCRACTU Kemet | | | | | | | | 13 | | | | | | | | 14 1 D1 600 V, 1 A, Rectifier, Glass Passivated, POWERDI123 DFLR1600-7 Diodes, Inc. 15 1 D2 600 V, 1 A, Ultrafast Recovery, 75 ns, SOD-123 UFM15PL-TP Micro Commercial 16 3 D3,04,D5 600 V, 1 A, Fast Recovery, 250 ns, SMA RS1J-13-F Diodes, Inc. 17 1 D6 600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA ES2J-TF Micro Commercial 18 3 J1,2,J3 CONN QC TAB 0.250 SOLDER 1287-ST KeyStone 19 2 J4,J5 8 Pos (1 x 8) header, 0.1 pitch, Vertical, Au P9101-08-D32-1 Protectron 20 1 36 Test Point, RED, Thru-hole Mount 5010 Keystone 21 1 J7 Test Point, BLK, Thru-hole Mount 5011 Keystone 22 1 L1 680 µH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES 43 kc, 5%, 1/8 W, Thick Film, 0805 ERJ-66P3433V Panasonic 24 1 R2 RES, 2.49 kc, 1%, 1/16 W, Thick Film, 0402 ERJ-2KF2931X< | | | | | | | | 1 | 13 | 1 | C27 | | | | | 16 3 D3,D4,D5 600 V, 1 A, Fast Recovery, Z50 ns, SMA RS1J-13-F Diodes, Inc. 17 1 D6 600 V, 2 A, Super Fast, 35 ns, D0-214AC, SMA ES2J-LTP Micro Commercial 18 3 1J,22,J3 CONN QC TAB 0.250 SOLDER 1287-ST KeyStone 19 2 J4,J5 8 Pos (1 x 8) header, 0.1 pitch, Vertical, Au P9101-08-032-1 Protectron 20 1 J5 Test Point, RLR,
Thru-hole Mount 5010 Keystone 21 1 J7 Test Point, BLR, Thru-hole Mount 5011 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RE RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ER1-66EY1433V Panasonic 24 1 R2 RES, 2.49 kΩ, 1/6, 1/10 W, Thick Film, 0805 ERJ-66EY1433V Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0803 ERJ-3EKF1000V Panasonic 26 3 R4,R9R,R16 RES, 10 kΩ, 1/4 W, Thick Film, 0603 ERJ-3 | | | | POWERDI123 | | · | | 17 1 D6 600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA ES2J-LTP Micro Commercial 18 3 J1,J2,J3 CONN QC TAB 0.250 SOLDER 1287-5T KeyStone 20 1 J6 Test Point, RED, Thru-hole Mount S010 Keystone 21 1 J6 Test Point, RED, Thru-hole Mount S010 Keystone 21 1 J7 Test Point, BLK, Thru-hole Mount S010 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES, 43 κΩ, 5%, 1/8 W, Thick Film, 0805 ER1-6GEYJ433V Panasonic 24 1 R2 RES, 249 kΩ, 1%, 1/10 W, Thick Film, 0402 ER3-2RKF2491X Panasonic 25 1 R3 RES, 100, 1%, 1/16 W, Thick Film, 0603 ER1-6GEYJ433V Panasonic 26 3 R4,R9,R16 RES, 100, 1%, 1/16 W, Thick Film, 0603 ER3-2RKF2491X Panasonic 27 14 R13,R14,R15,R15,R16,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19,R12,R18,19 | | | | | | | | 18 3 31,12,13 CONN QC TAB 0.250 SOLDER 1287-ST KeyStone 19 2 34,15 8 Pos (1 x 8) header, 0.1 pitch, Vertical, Au P9101-08-D32-1 Protectron 20 1 36 Test Point, RED, Thru-hole Mount 5010 Keystone 21 1 37 Test Point, BLK, Thru-hole Mount 5011 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX SBC3-681-361 SUNX 23 1 R1 RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ER3-6EV1433V Panasonic 24 1 R2 RES, 249 kΩ, 1%, 1/10 W, Thick Film, 0402 ER3-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/16 W, Thick Film, 0805 ER3-6EN1832V Panasonic R5,R6,R7,R8, R10,R11,R12, R2 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ER3-3EKF1000V Panasonic R5,R6,R7,R8, R10,R11,R12, R2 RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603 ER3-3EKF1001V Panasonic R5,R6,R7,R8, R10,R11,R12, R2 RES, 3 kΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi R2 R22,R23 RES, 2.00 kΩ, 1%, 1/4 W, Thick Film, 1206 ER3-8ENF2004V Panasonic R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ER3-3EKF1001V Panasonic R32,R32,R39, R49 | | | · · · | , , , , , , , , , , , , , , , , , , , | | | | 19 2 J4,J5 8 Pos (1 x 8) header, 0.1 pitch, Vertical, Au P9101-08-D32-1 Protectron 20 1 J6 Test Point, RED, Thru-hole Mount 5010 Keystone 21 1 J7 Test Point, RED, Thru-hole Mount 5011 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX SBC3-681-3 | | | | | | | | 20 1 36 Test Point, RED, Thru-hole Mount 5010 Keystone 21 1 17 Test Point, BLK, Thru-hole Mount 5011 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES, 43 kC, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ433V Panasonic 24 1 R2 RES, 2.49 kC, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kO, 1%, 1/16 W, Thick Film, 0402 ERJ-6ENF1822V Panasonic 26 3 R4,89,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R13,R14,R15, R12, R20 RES, 1 kΩ, 1%, 1/4 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-3ENF2004V Panasonic 30 6 R24,R25,R30, R4 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 | | | | | | · | | 21 1 J7 Test Point, BLK, Thru-hole Mount 5011 Keystone 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ER-GEFYJ433V Panasonic 24 1 R2 RES, 249 kΩ, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1822V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R18,R14,R15, R17,R18,R19, R20 RES, 1 kΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-3EKP1001V Panasonic 30 6 R24,R25,R30, R30, RES, 10 Ω, 5%, 1/10 W, Thick Film, 1206 ERJ-3ENF2004V Panasonic 31 4 R26,R32,R39, R38, R41 RES, 410 Q, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 41, | | | | | | | | 22 1 L1 680 μH, 0.36 A SBC3-681-361 SUNX 23 1 R1 RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ433V Panasonic 24 1 R2 RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/16 W, Thick Film, 0805 ERJ-6ENF1822V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R13,R14,R15, R12, R2, R2 RES, 1 kΩ, 1%, 1/4 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 2 x00 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2 x00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 30 6 R24,R25,R30, R25, R30, R25, R25, R30, R25, R34, R45, R47, R49, R45, R47, R49, R45, R47, R49, R49, R49, R49, R49, R49, R49, R49 | | | | | | , | | 23 1 R1 RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ433V Panasonic 24 1 R2 RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1822V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R13,R14,R15, R17,R18,R19, R20 RES, 1 kΩ, 1%, 1/4 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-3GEYJ100V Panasonic 30 6 R24,R25,R30, R31,R37,R38 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 1/8 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 3 | | | | , , | | | | 24 1 R2 RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X Panasonic 25 1 R3 RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1822V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R5,R6,R7,R8, R10,R11,R12, R20 RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 30 6 R24,R25,R30, R5, 1/10 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 31 4 R26,R32,R39, R5, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKP422V Panasonic 34 3 R29,R35,R42 | | | | . , | | SUNX | | 25 1 R3 RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1822V Panasonic 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic R5,R6,R7,R8, R10,R11,R12, R2, R13,R14,R15, R17,R18,R19, R20 RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 30 6 R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0603 ERJ-6ENF4751V Panasonic | | 1 | | | ERJ-6GEYJ433V | Panasonic | | 26 3 R4,R9,R16 RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1000V Panasonic 27 14 R13,R14,R15, R13,R14,R15, R17,R18,R19, R20 RES, 1 kΩ, 1%, 1/4 W, Thick Film, 0603 ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-3ENF2004V Panasonic 30 6 R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 35 1 R36 RES, 475 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 500 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic <td>24</td> <td>1</td> <td></td> <td>RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402</td> <td>ERJ-2RKF2491X</td> <td>Panasonic</td> | 24 | 1 | | RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402 | ERJ-2RKF2491X | Panasonic | | R5,R6,R7,R8, R10,R11,R12, R13,R14,R15, R13,R14,R15, R17,R18,R19, R20 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi Panasonic R29 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic R32 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic R34 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic R35 R36 RES, 4.75 kΩ, 1%, 1/16 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic R36 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic R37 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic R38 1 R50 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic R39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERJ-3GEYJ561V Panasonic R39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERJ-3GEYD60V Panasonic R40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A BRD1267C Power Integrations R42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | 25 | 1 | R3 | RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805 | ERJ-6ENF1822V | Panasonic | | 27 14 R10,R11,R12, R13,R14,R15, R17,R18,R19, R20 RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF1001V Panasonic 28 1 R21 RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206 KTR18EZPF3004 Rohm Semi 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 30 6 R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 54.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3RQJR22V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 0603 ERJ-6ENF4751V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, | 26 | 3 | R4,R9,R16 | RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603 | ERJ-3EKF1000V | Panasonic | | 29 2 R22,R23 RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 ERJ-8ENF2004V Panasonic 30 6 R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ361V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic <td< td=""><td>27</td><td>14</td><td>R10,R11,R12,
R13,R14,R15,
R17,R18,R19,</td><td>RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603</td><td>ERJ-3EKF1001V</td><td>Panasonic</td></td<> | 27 | 14 | R10,R11,R12,
R13,R14,R15,
R17,R18,R19, | RES, 1 k Ω , 1%, 1/16 W, Thick Film, 0603 | ERJ-3EKF1001V | Panasonic | | 30 6 R24,R25,R30, R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ100V Panasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ861V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERJ-3GEY0R00V Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations | 28 | 1 | R21 | | KTR18EZPF3004 | Rohm Semi | | 30 6 R31,R37,R38 RES, 10 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Pariasonic 31 4 R26,R32,R39, R49 RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ103V Panasonic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ160V Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations | 29 | 2 | R22,R23 | RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206 | ERJ-8ENF2004V | Panasonic | | 31 4 R49 RES, 10 R2, 5%, 1/10 W, Flick Film, 0803 ERJ-3GET/103V Paliasolic 32 3 R27,R33,R40 RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4422V Panasonic 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 | 30 | 6 | | RES, $10~\Omega$, 5%, $1/10~W$, Thick Film, 0603 | ERJ-3GEYJ100V | Panasonic | | 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYD61V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERJ-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 | 31 | 4 | | RES, 10 k Ω , 5%, 1/10 W, Thick Film, 0603 | ERJ-3GEYJ103V | Panasonic | | 33 3 R28,R34,R41 RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4422V Panasonic 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYD61V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERJ-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 | 32 | 3 | R27,R33,R40 | RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805 | ERJ-6ENF4422V | Panasonic | | 34 3 R29,R35,R42 RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 ERJ-8RQJR22V Panasonic 35 1 R36 RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF4751V Panasonic 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT-753 MCP1804T-5002I/OT MicroChip | 33 | 3 | | | ERJ-3EKF4422V | Panasonic | | 36 3 R43,R45,R47 RES, 150 Ω , 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω , 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω , 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT-753 MCP1804T-5002I/OT MicroChip | 34 | 3 | R29,R35,R42 | RES, 0.22 R, 5%, 1/4 W, Thick Film, 1206 | ERJ-8RQJR22V | Panasonic | | 36 3 R43,R45,R47 RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ151V Panasonic 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT-753 MCP1804T-5002I/OT MicroChip | 35 | 1 | R36 | RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805 | ERJ-6ENF4751V | Panasonic | | 37 3 R44,R46,R48 RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ561V Panasonic 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT-753 MCP1804T-5002I/OT MicroChip | | 3 | | | ERJ-3GEYJ151V | Panasonic | | 38 1 R50 RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEY0R00V Panasonic 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | | | | | | | | 39 1 RT1 NTC Thermistor, 100 kΩ, 3%, 0603 ERT-J1VS104JA Panasonic 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A (DC) BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | 38 | | | | | | | 40 3 U1,U2,U3 BridgeSwitch, Max. BLDC Motor Current 11.5A BRD1267C Power Integrations 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | | | | | | | | 41 1 U4 LinkSwitch-TN2, SO-8C LNK3204D Power Integrations 42 1
U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | | 3 | | BridgeSwitch, Max. BLDC Motor Current 11.5A | | | | 42 1 U5 IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT MicroChip | 41 | 1 | U4 | ` / | LNK3204D | Power Integrations | | | | | | IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, | O, 5.0 V, 0.15 A, 28 Vin max, MCP1804T-5002I/OT | | | | 43 | 1 | U6 | | AD8648ARUZ-REEL | Analog Devices | #### **Performance Data** 7 This section presents the waveform plots and performance data of the BridgeSwitch inverter. The high-voltage (VBUS) level is 340 VDC unless stated otherwise. Light load measurements describe the inverter operating with no mechanical brake load applied to the motor. Full load operation describes the inverter operating at 400 W output power (refer to Appendix for the details on the method used to measure the output power of a three-phase inverter). All measurements were performed at 12 kHz PWM frequency, 29°C average ambient temperature, and three-phase field-oriented control. #### 7.1 Start-Up Operation #### 7.1.1 **BPL and BPH Start-Up Waveforms** The waveforms below show the low-side and high-side BYPASS pin voltages of device U3 (Phase W) after VBUS = 340 VDC bus turns on. The start-up power up sequence follows the recommended start-up sequence described in section 8.1. The VBUS turn-on slew rate is set at 5 V / ms. **Figure 12** — BPL/BPH Start-up at Light Load, INL = 0 V. **Figure 13** — BPL/BPH Start-up at Light Load, INL = 5 V. CH2: V_{BUS}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{BPH}, 10 V / div. CH3: V_{BPL}, 10 V / div. Time Scale: 20 ms / div. BPL Rise Time = 8.6 ms. CH2: V_{BUS}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{BPH}, 10 V / div. CH3: V_{BPL}, 10 V / div. Time Scale: 20 ms / div. BPH Rise Time = 28 ms. ### 7.1.2 *Motor Start-Up Waveforms* The waveforms below demonstrate the motor start-up of the BridgeSwitch inverter at light load up to 50 W loading condition. VBUS is set at 340 VDC and the motor maximum speed is set at 5000 RPM. Figure 14 - Motor Start-up at Light Load. CH2: V_{HB}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: I_{PHASE_CURRENT}, 1 A / div. Time Scale: 2 s / div. Maximum Phase Peak Current = 846 mA_{PK}. Maximum VHB Peak Voltage = $350.57 V_{PK}$. **Figure 15** — Motor Start-up at 50 W Load. CH2: V_{HB}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: I_{PHASE_CURRENT}, 1 A / div. Time Scale: 2 s / div. Maximum Phase Peak Current = $1.36 A_{PK}$. Maximum VHB Peak Voltage = $350.57 V_{PK}$. ### 7.2 Steady-State Operation ### 7.2.1 Phase Voltages (Drain-to-Source) During Steady-State The waveforms below show the phase voltages of the BridgeSwitch (low side drain-to-source voltage) three-phase inverter using field-oriented control. The maximum peak voltage was measured from light to full load (inverter load) during steady-state operation. The VBUS is 340 VDC and the motor speed is 5000 RPM. **Figure 16** – Drain to Source Voltage at Light Load. CH2: V_{HB_PHASEU}, 200 V / div. CH4: V_{HB_PHASEV}, 200 V / div. CH1: V_{HB_PHASEW}, 200 V / div. Time Scale: 4 ms / div. Maximum Peak Voltage (U) = 358.89 V_{PK} . Maximum Peak Voltage (V) = 366.01 V_{PK} . Maximum Peak Voltage (W) = 365.22 V_{PK} . Figure 17 – Drain to Source Voltage at 100 W Load. CH2: V_{HB_PHASEU}, 200 V / div. CH4: V_{HB_PHASEV}, 200 V / div. CH1: VHB_PHASEW, 200 V / div. Time Scale: 4 ms / div. Maximum Peak Voltage (U) = 358.89 V_{PK} . Maximum Peak Voltage (V) = 366.01 V_{PK} . Maximum Peak Voltage (W) = 365.22 V_{PK} . Figure 18 – Drain to Source Voltage at 200 W Load. CH2: V_{HB_PHASEU}, 200 V / div. CH4: V_{HB_PHASEV}, 200 V / div. CH1: V_{HB_PHASEW}, 200 V / div. Time Scale: 4 ms / div. Maximum Peak Voltage (U) = 358.89 V_{PK} . Maximum Peak Voltage (V) = 366.01 V_{PK} . Maximum Peak Voltage (W) = 365.22 V_{PK} . Figure 19 - Drain to Source Voltage at 400 W Load. CH2: V_{HB_PHASEU}, 200 V / div. CH4: V_{HB_PHASEV}, 200 V / div. CH1: V_{HB_PHASEW}, 200 V / div. Time Scale: 4 ms / div. Maximum Peak Voltage (U) = 366.80 V_{PK} . Maximum Peak Voltage (V) = 366.01 V_{PK} . Maximum Peak Voltage (W) = 365.22 V_{PK} . ### 7.2.2 High-Side Drain to Source Voltage Slew Rate The waveforms below show the voltage slew rate at TURN ON and TURN OFF transitions of the high-side BridgeSwitch FREDFET. The measurement were taken at 340 VDC, 5000 RPM, 200 W and 400 W loading conditions. **Figure 20** – TURN ON Slew Rate, 200 W Load. CH1: V_{DS HIGHSIDE}, 50 V / div. Time Scale: 5 ms / div. Time Scale (Zoomed Area): 50 ns / div. Figure 22 – TURN ON Slew Rate, 400 W Load. CH1: VDS_HIGHSIDE, 50 V / div. Time Scale: 5 ms / div. Time Scale: 5 ms / div. Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 2.54 V / ns. Figure 21 - TURN OFF Slew Rate, 200 W Load. CH1: V_{DS} HIGHSIDE, 50 V / div. Time Scale: 5 ms / div. Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 2.38 V / ns. Figure 23 – TURN OFF Slew Rate, 400 W Load. CH1: V_{DS_HIGHSIDE}, 50 V / div. Time Scale: 5 ms / div. Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 2.13 V / ns. ### 7.2.3 Phase Currents During Steady-State The waveforms below show the phase currents of the BridgeSwitch inverter using threephase field-oriented method of control (FOC). The maximum peak currents were measured from 100 W to 400 W loading condition during steady-state operation. Figure 24 – Phase Current at 100 W Load. CH1: IPHASEU, 2 A / div. CH2: IPHASEV, 2 A / div. CH3: IPHASEW, 2 A / div. Time Scale: 10 ms / div. RMS Current (U) = 309 mA_{RMS}. RMS Current (V) = 308 mA_{RMS}. RMS Current (W) =323 mA_{RMS}. Figure 26 - Phase Current at 300 W Load. CH1: IPHASEU, 2 A / div. CH2: IPHASEV, 2 A / div. CH3: I_{PHASEW}, 2 A / div. Time Scale: 10 ms / div. RMS Current (U) = 903 mA_{RMS} . RMS Current (V) = 903 mA_{RMS} . RMS Current (W) = 919 mA_{RMS} . Figure 25 - Phase Current at 200 W Load. CH1: IPHASEU, 2 A / div. CH2: IPHASEV, 2 A / div. CH3: IPHASEW, 2 A / div. Time Scale: 10 ms / div. RMS Current (U) = $604 \text{ mA}_{\text{RMS}}$. RMS Current (V) = $604 \text{ mA}_{\text{RMS}}$. RMS Current (W) = $616 \text{ mA}_{\text{RMS}}$. Figure 27 - Phase Current at 400 W Load. CH1: IPHASEU, 2 A / div. CH2: IPHASEV, 2 A / div. CH3: I_{PHASEW}, 2 A / div. Time Scale: 10 ms / div. RMS Current (U) = $1.17 \text{ A}_{\text{RMS}}$. RMS Current (V) = 1.18 A_{RMS}. RMS Current (W) = $1.19 \text{ A}_{\text{RMS}}$. #### 7.2.4 INL and /INH Signals The waveforms below show the low-side (INL) and high-side (/INH) input PWM signals during light load to full load condition at steady-state operation. The PWM frequency is set at 12 kHz with a constant motor speed of 5000 RPM. Figure 28 — INL and /INH Signal at 100 W Load. CH2: V_{HB PHASEW}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{INH}, 5 V / div. Time Scale: 2 ms / div. Time Scale (Zoomed Area): $50 \mu s / div$. **Figure 30** – INL and /INH Signal at 300 W Load. CH2: V_{HB PHASEW}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{INH}, 5 V / div. Time Scale: 2 ms / div. Time Scale (Zoomed Area): 50 µs / div. Figure 29 – INL and /INH Signal at 200 W Load. CH2: V_{HB PHASEW}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{INH}, 5 V / div. Time Scale: 2 ms / div. Time Scale (Zoomed Area): 50 μs / div. Figure 31 – INL and /INH Signal at 400 W Load. CH2: V_{HB PHASEW}, 100 V / div. CH4: V_{INL}, 5 V / div. CH1: V_{INH}, 5 V / div. Time Scale: 2 ms / div. Time Scale (Zoomed Area): 50 µs / div. ### 7.2.5 **BPL and BPH during Steady-State** The waveforms below show the BPL and BPH (low-side and high-side self-supply bias level respectively) from light load to full load condition during steady-state operation. Figure 32 – BPL and BPH Signal at 100 W Load. CH2: V_{HB_PHASEW}, 100 V / div. CH4: V_{BPL}, 10 V / div. CH1: V_{BPH}, 10 V / div. Time Scale: 4 ms / div. BPL Average Voltage = 14.22 V. BPH Average Voltage = 14.54 V. **Figure 33** – BPL and BPH Signal at 200 W Load. CH2: V_{HB_PHASEW}, 100 V / div. CH4: V_{BPL}, 10 V / div. CH1: V_{BPH}, 10 V / div. Time Scale: 4 ms / div. BPL Average Voltage = 14.21 V. BPH Average Voltage = 14.54 V. Figure 34 – BPL and BPH Signal at 300 W Load. CH2: V_{HB_PHASEW}, 100 V / div. CH4: V_{BPL}, 10 V / div. CH1: V_{BPH}, 10 V / div. Time Scale: 4 ms / div. BPL Average Voltage = 14.21 V. BPH Average Voltage = 14.54 V. Figure 35 – BPL and BPH Signal at 400 W Load. CH2: V_{HB_PHASEW}, 100 V / div. CH4: V_{BPL} , 10 V / div. CH1: V_{BPH} , 10 V / div. Time Scale: 4 ms / div. BPL Average Voltage = 14.20 V. BPH Average Voltage = 14.52 V. ### 7.3 Thermal Performance The thermal scans below depict on-board device thermal performance after 20 minutes each for 100 W, 200 W, 300 W, and 400 W inverter output power running at a constant speed of 5000 RPM, 12 kHz PWM switching frequency, three-phase FOC modulation, BridgeSwitch device at self and external supply mode, with an average ambient temperature of 29 °C measured three inches above the inverter board. The auxiliary circuit, +5 V linear regulator, and input diode were disabled to solely reflect the inverter temperature by depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode for the bypass pin supply. The inverter setup was enclosed in an acrylic case to minimize the effects of air flow on the thermal data. **Figure 36 –** Thermal Performance at Self and External Supply Mode. # 7.3.1 100 W Loading Condition (325 mA Average Motor Phase Current) **Figure 37** – BridgeSwitch Device Case Temperatures at 100 W Output Power (Self-Supply Mode). **Figure 38** – BridgeSwitch Device Case Temperatures at 100 W Output Power (External Supply Mode). ## 7.3.2 200 W Loading Condition (620 mA Average
Motor Phase Current) **Figure 39** — BridgeSwitch Device Case Temperatures at 200 W Output Power (Self-Supply Mode). **Figure 40** — BridgeSwitch Device Case Temperatures at 200 W Output Power (External Supply Mode). # 7.3.3 300 W Loading Condition (920 mA Average Motor Phase Current) **Figure 41** — BridgeSwitch Device Case Temperatures at 300 W Output Power (Self-Supply Mode). **Figure 42** – BridgeSwitch Device Case Temperatures at 300 W Output Power (External Supply Mode). ## 7.3.4 400 W Loading Condition (1200 mA Average Motor Phase Current) **Figure 43** — BridgeSwitch Device Case Temperatures at 400 W Output Power (Self-Supply Mode). **Figure 44** – BridgeSwitch Device Case Temperatures at 400 W Output Power (External Supply Mode). # 7.3.5 *Thermal Scan Summary Tables* # 7.3.5.1 *Self-Supply Mode* | Dhasa | Doviso | Inverter Output Power | | | | | | |-------|--------|-----------------------|-------|-------|-------|--|--| | Phase | Device | 100 W | 200 W | 320 W | 400 W | | | | U | U1 | 61.4 | 69.4 | 79.8 | 92.9 | | | | V | U2 | 59.3 | 67.4 | 77.8 | 92.4 | | | | W | U3 | 59.4 | 67.0 | 77.8 | 90.3 | | | | Ave. | Temp | 60.0 | 67.9 | 78.5 | 91.9 | | | # 7.3.5.2 External Supply Mode | Dhasa | Doviso | Inverter Output Power | | | | | | |-------|--------|-----------------------|-------|-------|-------|--|--| | Phase | Device | 100 W | 200 W | 320 W | 400 W | | | | U | U1 | 49.2 | 57.2 | 68.7 | 82.3 | | | | V | U2 | 49.3 | 57.8 | 69.3 | 83.4 | | | | W | U3 | 48.7 | 57.1 | 68.5 | 82.5 | | | | Ave. | Temp | 49.1 | 57.4 | 68.8 | 82.7 | | | # 7.4 **No-Load Input Power Consumption** The graph below illustrates the BridgeSwitch three-phase inverter no-load input power measured at varying input voltages. The voltage was measured directly at the positive input DC BUS of the inverter. The input diode, auxiliary circuit, +5 V linear regulator, and current sense amplifier were disabled by depopulating components D6, U4, U5, and U6. Figure 45 - No-Load Input Power. ### 7.5 *Efficiency* The graph and table below displays the BridgeSwitch inverter efficiency at 340 VDC input, 12 kHz PWM switching frequency, a constant motor speed of 5000 RPM, three-phase FOC modulation, BridgeSwitch devices at self and external supply mode, and at an average ambient temperature of 29°C. The auxiliary circuit, +5 V linear regulator, and input diode were disabled for efficiency data accuracy. This was performed by measuring the input voltage directly at the positive input DC BUS of the inverter, and depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode to serve as bypass pin supply. Figure 46 - Inverter Efficiency Graph. # 7.5.1 Efficiency Table at Self Supply Mode | DC
Input
Voltage
(V _{IN}) | Input DC
Current
(mA) | Input
Power
(W) | I _{RMS} U
(mA) | I _{RMS} V
(mA) | I _{RMS} W
(mA) | Inverter
Output
Power
(W) | Inverter
Efficiency
(%) | |--|-----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------| | 340 | 133 | 45.29 | 135 | 139 | 125 | 42.38 | 93.56 | | 340 | 255 | 86.65 | 265 | 267 | 253 | 83.41 | 96.26 | | 340 | 359 | 122.27 | 373 | 376 | 362 | 118.72 | 97.10 | | 340 | 487 | 165.59 | 494 | 505 | 491 | 161.55 | 97.56 | | 340 | 607 | 206.66 | 622 | 624 | 610 | 202.14 | 97.81 | | 340 | 722 | 245.78 | 735 | 738 | 724 | 240.50 | 97.85 | | 340 | 850 | 289.32 | 863 | 864 | 850 | 283.18 | 97.88 | | 340 | 975 | 331.73 | 986 | 983 | 970 | 324.82 | 97.92 | | 340 | 1096 | 372.66 | 1102 | 1099 | 1088 | 364.80 | 97.89 | | 340 | 1218 | 414.19 | 1209 | 1207 | 1196 | 405.40 | 97.88 | **Table 2 –** Efficiency Table (Self-Supply Mode). # 7.5.2 Efficiency Table at External Supply Mode | DC
Input
Voltage
(V _{IN}) | Input DC
Current
(mA) | Input
Power
(W) | I _{RMS} U
(mA) | I _{RMS} V
(mA) | I _{RMS} W
(mA) | Inverter
Output
Power
(W) | Inverter
Efficiency
(%) | |--|-----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------| | 340 | 129 | 43.84 | 135 | 138 | 124 | 42.00 | 95.80 | | 340 | 252 | 85.76 | 264 | 268 | 254 | 83.62 | 97.50 | | 340 | 357 | 121.58 | 372 | 377 | 363 | 119.12 | 97.98 | | 340 | 486 | 165.23 | 495 | 506 | 492 | 162.31 | 98.23 | | 340 | 605 | 205.95 | 623 | 625 | 611 | 202.56 | 98.35 | | 340 | 720 | 244.85 | 736 | 737 | 723 | 240.84 | 98.36 | | 340 | 848 | 288.47 | 865 | 863 | 850 | 283.63 | 98.32 | | 340 | 975 | 331.55 | 983 | 979 | 966 | 325.90 | 98.30 | | 340 | 1094 | 372.05 | 1098 | 1097 | 1085 | 365.58 | 98.26 | | 340 | 1211 | 411.77 | 1205 | 1202 | 1190 | 404.49 | 98.23 | **Table 3** – Efficiency Table (External Supply Mode). # 7.6 Device and System Level Protection / Monitoring # 7.6.1 *Overcurrent Protection (OCP)* The waveforms below demonstrate the current limit triggering of the BridgeSwitch device. For this test, the current set resistors R_{XL} and R_{XH} were set to 44.2 k Ω resulting in a current limit of approximately 4.1 A_{pk} . **Figure 47** – OCP at $R_{XL}/R_{XH} = 44.2 \text{ k}\Omega$, $I_{LIM} = 4.1 \text{ A}$. CH1: IPHASEU, 4 A / div. CH2: IPHASEV, 4 A / div. CH3: IPHASEW, 4 A / div. CH4: VFAULT, 1 V / div. Time Scale: 500 ms / div. Time Scale (Zoomed Area): 100 µs / div. FAULT Flag Reading = 0000010. ### 7.6.2 **Thermal Warning** The waveforms below depict the low-side FREDFET over-temperature warning. A localized external heat source was applied to the device to force temperature rise. **Figure 48** – Thermal Warning at 100 W. CH3: I_{PHASE}, 1 A / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 20 ms / div. Time Scale (Zoomed Area): 100 μs / div. FAULT Flag/Reading = 0000100. Figure 49 - Thermal Warning at 200 W. CH3: I_{PHASE}, 1 A / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 20 ms / div. Time Scale (Zoomed Area): 100 μ s / div. FAULT Flag/Reading = 0000100. **Figure 50** – Thermal Warning at 300 W. CH3: I_{PHASE}, 1 A / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 20 ms / div. Time Scale (Zoomed Area): 100 μs / div. FAULT Flag/Reading = 0000100. **Figure 51** – Thermal Warning at 400 W. CH3: I_{PHASE} , 1 A / div. CH1: V_{FAULT} , 2 V / div. Time Scale: 20 ms / div. Time Scale (Zoomed Area): 100 µs / div. FAULT Flag/Reading = 0000100. ### 7.6.3 Thermal Shutdown The waveform below depict the low-side FREDFET over-temperature shutdown. A localized external heat source was applied to a single BridgeSwitch device (U2) to force temperature rise while the inverter is running at 100 W loading condition. Figure 52 - Thermal Shutdown. CH1: IPHASEU, 2 A / div. CH2: IPHASEV, 2 A / div. CH3: IPHASEW, 2 A / div. CH4: VFAULT, 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): 100 μs / div. FAULT Flag/Reading = 0001000. ### 7.6.4 *Undervoltage (UV)* The test results below demonstrate the integrated bus UV monitoring function and status reporting through the communication bus (FAULT pin). Device U1 senses the bus voltage through resistors R21, R22, and R23. **Figure 53** – UVP, 5000 RPM, No-Load, 340 V to 220 V. CH2: V_{BUS}, 100 V / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 50 ms / div. Time Scale (Zoomed Area): 100 μs / div. Voltage Slew Rate = 0.5 V / msec. UV Level = 100%. FAULT Flag Reading = 0100000. UV Level = 85%. FAULT Flag Reading = 0110000. Voltage Slew Rate = 0.5 V / msec. **Figure 55** – UVP, 5000 RPM, No-Load, 190 V to 160 V. CH2: V_{BUS}, 100 V / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 50 ms / div. Time Scale (Zoomed Area): 100 μs / div. Voltage Slew Rate = 0.5 V / msec. UV Level = 70%. FAULT Flag Reading = 1000000. Figure 56 - UVP, 5000 RPM, No-Load, 160 V to 120 V. CH2: V_{BUS}, 100 V / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 50 ms / div. Time Scale (Zoomed Area): 100 μs / div. Voltage Slew Rate = 0.5 V / msec. UV Level = 55%. FAULT Flag Reading = 1010000. # 7.6.5 Overvoltage (OV) The waveforms below illustrate the bus OV monitoring feature. The bus sensing resistance is set at 7 M Ω (total value of R21, R22, and R23) giving an overvoltage (OV) level threshold of 422 VDC. The BridgeSwitch device stops switching and reports the OV fault once the bus voltage exceeds the OV threshold. Switching resumes after the bus voltage level drops below the OV detection threshold. Figure 57 - OVP, 340 V to 425 V. CH2: V_{BUS}, 100 V / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 50 ms / div. Time Scale (Zoomed Area): $100 \mu s$ / div. Voltage Slew Rate = 0.5 V / msec. Measured OVP Level = 426.90 V. FAULT Flag/Reading = 0010000. Figure 58 - OVP clear, 425 V to 340 V. CH2: V_{BUS}, 100 V / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 50 ms / div. Time Scale (Zoomed Area): $100 \mu s / div$. Voltage Slew Rate = 0.5 V / msec. OV Fault Clear. FAULT Flag/Reading = 0000000. #### 7.6.6 System Thermal Fault The waveforms below show the system thermal warning flag of the BridgeSwitch device as detected by an external thermistor RT1. The device checks the resistance connected to the SM pin every second for a period of 10 ms. The system temperature fault was simulated by applying a localized external heat to sense thermistor RT1 with the motor running at different loading conditions. Figure 59 - System Thermal Fault, 5000 RPM, Light-Load. CH3: IPHASE, 1 A / div. CH1: VFAULT, 2 V / div. Time Scale: 10 ms / div. Time Scale (Zoomed Area): $100 \mu s / div$. FAULT Flag/Reading = 1100000. Figure 60 - System Thermal Fault, 5000 RPM, 30 W Load. CH3: IPHASE, 1 A / div. CH1: VFAULT, 2 V / div. Time Scale: 10
ms / div. Time Scale (Zoomed Area): $100 \mu s / div$. FAULT Flag/Reading = 1100000. Figure 61 – System Thermal Fault, 5000 RPM, 100 W. CH3: I_{PHASE}, 1 A / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 10 ms / div. Time Scale (Zoomed Area): 100 μ s / div. FAULT Flag/Reading = 1100000. Figure 62 - System Thermal Fault, 5000 RPM, 200 W. CH3: I_{PHASE}, 1 A / div. CH1: V_{FAULT}, 2 V / div. Time Scale: 10 ms / div. Time Scale (Zoomed Area): 100 μ s / div. FAULT Flag/Reading = 1100000. # 7.7 Abnormal Motor Operation Test This paragraph provides results during abnormal operation tests for appliances with motors as described in IEC 60335-1 (Safety of household and similar electrical appliances). The test includes: - Operation under stalled motor conditions - Operation with one motor winding disconnected - Running overload test The test results demonstrate the integrated protection features of the BridgeSwitch under such abnormal conditions. # 7.7.1 Operation Under Stalled (Motor) Conditions For the motor stalled condition, the inverter is initially running at 340 VDC, 100 W and 200 W output load, and a motor speed of 5000 RPM. The load was then ramped up drastically to simulate sudden brake or sudden stoppage of motor rotation. #### Stalled Condition at 200 W Figure 63 - At Stalled Condition, 100 W Load. CH1: I_{PHASE(U)}, 4 A / div. CH2: I_{PHASE(V)}, 4 A / div. CH3: I_{PHASE(W)}, 4 A / div. CH4: V_{FAULT}, 1 V / div. Time Scale: 500 ms / div. Time Scale (Zoomed): 100 µs / div. 1^{st} FAULT = 0000010, LS FET OC. #### Stalled Condition at 400 W Figure 64 – At Stalled Condition, 200 W Load. CH1: I_{PHASE(U)}, 4 A / div. CH2: I_{PHASE(V)}, 4 A / div. CH3: I_{PHASE(W)}, 4 A / div. CH4: V_{FAULT}, 1 V / div. Time Scale: 500 ms / div. Time Scale (Zoomed): 100 μs / div. 1st FAULT = 0000010, LS FET OC. # 7.7.2 Operation with One Motor Phase / Winding Disconnected The figures below depict the motor phase currents and fault flag during operation with one motor winding disconnected. One phase is disconnected while the motor is running at 200 W and 400 W loading conditions (at 340 VDC input, and a motor speed of 5000 RPM). Reconnection of phase was also tested per loading condition to determine the robustness of the BridgeSwitch inverter. No damage was incurred in the motor, as well as in the BridgeSwitch inverter during and after the test. Figure 65 - At Running Condition, 340 VDC Input. CH1: IPHASE(U), 2 A / div. CH2: IPHASE(V), 2 A / div. CH3: I_{PHASE(W)}, 2 A / div. CH4: V_{FAULT}, 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): $100 \mu s$ / div. FAULT Flag = 0000001, HS FET OC. One Phase Reconnected at 200 W Figure 66 – At Running Condition, 340 VDC Input. CH1: I_{PHASE(U)}, 2 A / div. CH2: I_{PHASE(V)}, 2 A / div. CH3: I_{PHASE(W)}, 2 A / div. CH4: V_{FAULT}, 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): $100 \mu s$ / div. FAULT Flag = 0000010, LS FET OC. # PHASE CURRENT (V) #### One Phase Disconnected at 400 W Figure 67 - At Running Condition, 340 VDC Input. CH1: IPHASE(U), 2 A / div. CH2: IPHASE(V), 2 A / div. CH3: IPHASE(W), 2 A / div. CH4: VFAULT, 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): 100 μs / div. FAULT Flag = 0000010, LS FET OC. **Note:** During 400 W loss of phase condition, the motor stops rotating or remains at stalled condition even when the phase is reconnected. # 7.7.3 Running Overload Test The figures below demonstrate the motor phase currents and status update flag during a running overload fault condition. During this test, the motor load is increased such that the current through the motor windings increases by 10% and until steady conditions are established. The load is then increased again and the test repeats until the BridgeSwitch protection engages or the motor stalls. During the overload condition, the motor is non-operational with no device or motor damage. Figure 68 - At Running Condition, 340 VDC Input. CH1: IPHASE(U), 4 A / div. CH2: IPHASE(V), 4 A / div. CH3: IPHASE(W), 4 A / div. CH4: VFAULT, 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): 100 μ s / div. 1st FAULT Flag = 0000010, LS FET Over-Current. **Note:** During overload condition, the motor stops rotating or remains in stalled condition. # 8 Appendix # 8.1 **Board Quick Reference** Microcontroller (MCU) Interface Pins / Signals Figure 69 - DER-870 Board Quick Reference / Guide. # 8.1.1 The Microcontroller (MCU) Interface Contains the Following Pins / Signals - **FAULT BUS** Pin dedicated for fault reporting of all BridgeSwitch devices. - GND Common ground interface between the microcontroller and the inverter board. - PWMH_U, PWML_U, PWMH_V, PWML_V, PWMH_W, and PWML_W PWM input signal interface from the system microcontroller to the BridgeSwitch device. - +5 V Voltage supply pin for the microcontroller as needed. - **SM** Configurable system monitoring pin for the BridgeSwitch device (U2). - Curr_fdbkU, Curr_fdbkV, Curr_fdbkW Current feedback information needed by the microcontroller (MCU). This signal directly comes from the inverter current sense resistor passing through the current sense amplifier circuit. - **IPH_U, IPH_W** Instantaneous phase current information of the low-side power FREDFET Drain-to-Source current of each BridgeSwitch device coming from the IPH pin. **Note**: On the DER board, proper labels for the pin designations of connectors are provided. # 8.1.2 **J4 Connector Pin Designation** | Pin
No. | Signal | Туре | Comments | |------------|-----------|--------------|--| | 1 | PWML_V | Input | Gate drive signal for low-side power FREDFET Phase V. | | 2 | PWMH_V | Input | Gate drive signal for high-side power FREDFET Phase V. | | 3 | PWML_W | Input | Gate drive signal for low-side power FREDFET Phase W. | | 4 | PWMH_W | Input | Gate drive signal for high-side power FREDFET Phase W. | | 5 | PWML_U | Input | Gate drive signal for low-side power FREDFET Phase U. | | 6 | PWMH_U | Input | Gate drive signal for high-side power FREDFET Phase U. | | 7 | GND | n/a | Ground reference for connector input and output signals. | | 8 | FAULT_BUS | Input/Output | Single wire, bi-directional fault communication bus. | # 8.1.3 *J5 Connector Pin Designation* | Pin
No. | Signal | Туре | Comments | | | |------------|------------|--------|---|--|--| | 1 | IPH_U | Output | Voltage signal proportional to the instantaneous phase low-side FREDFET Drain current of Phase U. | | | | 2 | IPH_V | Output | Voltage signal proportional to the instantaneous phase low-side FREDFET Drain current of Phase V. | | | | 3 | IPH_W | Output | Voltage signal proportional to the instantaneous phase low-side FREDFET Drain current of Phase W. | | | | 4 | Curr_fdbkU | Output | Current feedback information needed by the microcontroller for phase U. | | | | 5 | Curr_fdbkV | Output | Current feedback information needed by the microcontroller for phase V. | | | | 6 | Curr_fdbkW | Output | Current feedback information needed by the microcontroller for phase W. | | | | 7 | SM_W | Input | External input for system sensing (i.e. can be connected to an external thermistor for system temperature monitor via status communication bus) | | | | 8 | +5 V | Output | Voltage supply pin for the microcontroller as needed | | | **Note**: On the RD board, proper labels for the pin designations of connectors are provided. # 8.2 Recommended Start-up Sequence BridgeSwitch devices have internal self-supply supporting commutation PWM frequencies up to 20 kHz. To ensure sufficient supply voltage levels across the BPL pin capacitor and the BPH pin capacitor at inverter start-up, the system microcontroller (MCU) should follow the recommended power-up sequence as depicted below. Figure 70 – Recommended Power-up Sequence with Self-Supplied Operation. The table below lists activities occurring during the recommended power-up sequence. | Time Point | Activity | | | | | |-------------------|---|--|--|--|--| | t ₀ | High-voltage DC bus is applied | | | | | | t ₁ | Internal current source starts charging BPL pin capacitor once HD pin voltage reaches V_{HD(START)} System MCU may start setting low-side power FREDFET control signal INL to high | | | | | | t ₂ | BPL pin voltage reaches V_{BPL} (typ. 14.5 V) Device determines external device settings Internal Gate drive logic turns on low-side power FREDFET after device setup completes and once INL becomes high or if it is already high Internal current source charges BPH pin capacitor | | | | | | t ₃ | BPH pin voltage reaches V_{BPH} with respect to the HB pin (typically 14.5 V) Device starts communicating successful power-up through fault pin Note: The device does not send a status update if the internal power-up sequence did not complete successfully. | | | | | | t ₄ | The BridgeSwitch device is ready for state operation (indicated by communicated status update at time point t₃) System MCU turns off low-side FREDFET | | | | | **Table 4 –** Power-up Sequence with Self-Supplied Operation. # 8.3 Status Word Encoding | FAULT | Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | |------------------------------------|-------|-------|-------|-------|-------|-------|-------| | HV Bus OV | 0 | 0 | 1 | | | | | | HV Bus UV 100% | 0 | 1 | 0 | | | | | | HV Bus UV 85% | 0 | 1 | 1 | | | | | | HV Bus UV 70% |
1 | 0 | 0 | | | | | | HV Bus UV 55% | | 0 | 1 | | | | | | System Thermal Fault | | 1 | 0 | | | | | | LS Driver Not Ready[1] | | 1 | 1 | | | | | | LS FET Thermal Warning | | 3 | - | 0 | 1 | | | | LS FET Thermal Shutdown | | | | 1 | 0 | | | | HS Driver Not Ready ^[2] | | | | 1 | 1 | | | | LS FET Over-Current | 1 | | | | | | | | HS FET Over-Current | | | | | | 1 | | | Device Ready (No Faults) | | 0 | 0 | 0 | 0 | 0 | 0 | #### **Notes:** - 1. Includes XL pin open/short circuit fault, IPH pin to XL pin short circuit, and trim bit corruption - 2. Includes HS-to-LS communication loss, V_{BPH} or internal 5 V rail out of range, and XH pin open/short-circuit fault **Table 5** – BridgeSwitch Fault Encoding. Figure 71 – Fault Status Communication Bit Stream. # 8.4 Suggested Microcontroller Action to BridgeSwitch Fault Conditions | Fault | Fault ID | Action/Decision | |-------------------------|----------|------------------------| | HV Bus Overvoltage | 001xxxx | Shutdown | | HV 100% | 010xxxx | Warning | | HV Bus 85% | 011xxxx | Warning | | HV Bus 70% | 100xxxx | Warning | | HV Bus 55% | 101xxxx | Warning | | System Thermal | 110xxxx | Shutdown | | LS Driver Not Ready | 111xxxx | Shutdown | | LS FET Thermal Warning | xxx010x | Warning | | LS FET Thermal Shutdown | xxx10xx | Shutdown | | LS FET Over-Current | xxxxx1x | Shutdown | | HS Driver Not Ready | xxx11xx | Shutdown | | HS FET Over-Current | xxxxxx1 | Shutdown | | Device Ready | 0000000 | None | # 8.5 *Inverter Output Power Measurement* The three-phase inverter output power (P_{OUT}) measurement uses the "two-wattmeter" method as illustrated below. $$P_{OUT} = P_{CH1} + P_{CH2}$$ Figure 72 – Inverter Output Power Measurement. # 8.6 Current Capability vs. Ambient Temperature The figure below depicts the continuous RMS current capability of the DER-870 example design under different operating conditions: 4 kHz, 12 kHz and 16 kHz PWM frequency and the three BRD1267C devices operating self-supplied or with external supply at their respective BPL and BPH pins. The DC bus voltage is 340 VDC and the motor is operating at a speed of 5000 RPM. The inverter board is enclosed in an acrylic case to minimize the effects of air flow to the thermal behavior of the BridgeSwitch devices. Each curve details the available continuous RMS current at different board ambient temperatures with a package temperature of 100 °C (average of all three devices). Figure 73 - Current Capability vs. Ambient Temperature (Max. 100 °C Package Temperature). # 8.7 Efficiency Curve at Different Switching Frequency The graph and table below shows the BridgeSwitch inverter efficiency at 340 VDC input, 4 kHz, 12 kHz, 16 kHz PWM switching frequencies, a constant motor speed of 5000 RPM, three-phase FOC modulation, BridgeSwitch devices at self and external supply mode, and at an average ambient temperature of 29 °C. The auxiliary circuit, +5 V linear regulator, and input diode were disabled for efficiency data accuracy. This was accomplished by measuring the input voltage directly at the positive input DC BUS of the inverter, and depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode. **Figure 74** – Inverter Efficiency Graph at Different Switching Frequencies. ## 8.8 Test Bench Set-up This setup improves the accuracy of all thermal measurements. The inverter board is enclosed in an acrylic case to minimize the effects of air flow to the thermal behavior of the BridgeSwitch devices. A digital multimeter with a thermocouple probe placed three inches above the inverter board is used for ambient temperature monitoring. **Figure 75** – Actual Bench Set-up. Figure 76 – Actual Bench Set-up (Motor Load). ## 8.8.1 **Equipment Used** - 1. **Motor (Model: 57BL110S30-3150TF0)** as a 300 W, 5000 RPM rated motor. - 2. **Motor brake load (Model: HB-503B by China-Tension)** as a 24 VDC, 300 W rated motor brake load. - 3. **Brake load control (Model: ICS-500 by China-Tension)** as a 24 VDC, 500 mA rated brake load control. - 4. **Coupler** as a 8 mm X 17 mm motor coupler. - 5. **High-voltage DC source (Agilent 6812B)** for supplying high-voltage DC input to the three-phase inverter. - 6. **Low-voltage DC source (Technique QT3005D-3)** as external supply for the microcontroller, current amplifier (+5 VDC), and gate driver (+17 VDC). - 7. **Oscilloscope** (RTO 1004) for waveform checking and analysis. - 8. **Digital Multimeter (Fluke 87V)** for ambient temperature monitoring. - 9. **Power Meter (WT310E)** for measuring input and output voltage, current, and power. # 9 Revision History | Date | Author | Rev. | Description & Changes | Approval | |-----------|---|------|---|-------------| | 21-Jul-20 | MQC / SM | 1.0 | Initial Release. | Apps & Mktg | | 13-May-21 | SM | 1.1 | Thermals and Efficiency Updates –
Closed Case Setup. | Apps & Mktg | | 16-Jun-22 | SM 1.2 Added modulation scheme information. | | Apps & Mktg | | #### For the latest updates, visit our website: www.power.com Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed. Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. #### **Patent Information** The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com/. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/. Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc. #### **Power Integrations Worldwide Sales Support Locations** #### **WORLD HEADQUARTERS** 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com #### **CHINA (SHANGHAI)** Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail: chinasales@power.com #### **CHINA (SHENZHEN)** 17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com **GERMANY** (AC-DC/LED Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com **GERMANY** (Gate Driver Sales) HellwegForum 1 59469 Ense Germany Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com #### INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 e-mail: indiasales@power.com #### **ITALY** Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com #### **JAPAN** Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com #### **KOREA** RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com #### **SINGAPORE** 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com #### TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com #### UK Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com