

설계 예제 보고서

제목	HiperLCS™ LCS700HG 를 사용하는 100W, 로우 프로파일(11mm) LLC DC-DC 컨버터
사양	380VDC 입력 – 24V, 3A, 12V, 2.32A 출력
애플리케이션	LCD TV
작성자	애플리케이션 엔지니어링 부서
문서 번호	DER-282
일자	2011 년 9 월 13 일
개정	1.2

요약 및 기능

- 매우 적은 부품 수
 - 적은 부품 수 및 소형 설계에 적합한 고집적 솔루션
 - 저가형 SMD(D-PAK) 출력 다이오드로 히트싱크 및 조립 비용 불필요
- 높은 동작 주파수(270kHz)에 따른 크기 축소 및 비용 절감
 - 세라믹 출력 커패시터 사용 가능
 - 트랜스포머 크기 축소, 로우 프로파일 EFD30 트랜스포머 사용
 - 버스트 모드를 통해 무부하 레귤레이션 보장
- 높은 효율
 - 100% 부하 시 >94%, 50% 부하 시 >93%
 - 용량성 전류 센싱으로 낮은 전력 소모 구현

특허 정보

여기에 설명한 제품 및 애플리케이션(제품의 외장 트랜스포머 구성 및 회로 포함)은 하나 이상의 미국 및 해외 특허의 대상이 되거나 Power Integrations에서 출원 중인 미국 및 해외 특허 신청의 대상이 될 수 있습니다. Power Integrations의 전체 특허 목록은 www.powerint.com에서 확인할 수 있습니다. Power Integrations는 고객에게 http://www.powerint.com/ip.htm에 명시된 특정 특허권에 따라 라이센스를 부여합니다.

내용		
1	중요 사항	4
2	소개	5
3	파워 서플라이 사양	7
4	회로도	8
5	회로 설명	9
5.1	1 차측	9
5.2	출력 정류	.11
6	PCB 레이아웃	.12
7	부품 목록	.13
8	트랜스포머 사양	.15
8.1	전기적 구성도	.15
8.2	전기적 사양	.15
8.3	재료	.15
8.4	트랜스포머 제작 구성도	.16
8.5	보빈 – 번호 지정 규칙	.16
8.6	트랜스포머 구성	. 17
8.7	권선 그림	
9	출력 인덕터 사양	
9.1	전기적 사양	.23
9.2	재료 목록	
10	LLC 공진 컨버터 설계 스프레드시트	
11	히트싱크 어셈블리	
12	성능 데이터	
12.1	효율성 – 100%, 50%, 20%, 10% 부하	
	효율성 데이터	
12.2	출력 크로스 레귤레이션	
	크로스 레귤레이션 데이터	
	벌크 전압 스타트 및 셧다운	
13	파형	.32
	하프 브리지 전압 및 전류, 정상 동작	
13.1.1	380VDC 입력에서 측정	.32
	출력 전압 스타트업 프로파일	
	부하 과도 응답(380VDC 입력 시 5%~100% 부하 단계)	
	출력 브라운아웃	
	출력 다이오드 피크 역 전압	
	단락 회로	
	출력 리플 측정	
	리플 측정 기술	
13.7.2	출력 리플 측정 결과	.39

14	써멀 측정	.40
	조건: 380VDC, 풀 부하, 1 시간 동안 가동	
	개정 내역	

중요 사항:

이 기판은 안전 절연거리 요구 사항에 맞도록 설계되었지만 엔지니어링 프로토타입은 아직 기관 승인을 받지 않은 상태입니다. 또한 트랜스포머는 1 차측에서 코어 및 2 차측의 공간을 충족하기 위한 적절한 보호판을 필요로 합니다.

1 중요사항

보드가 올바르게 동작하도록 하려면, 단자로 바로 배치된 +380V의 입력과 입력 복귀사이에 최소 10 uF의 벌크 커패시터를 함께 사용해야 합니다.

보드가 동작하려면 12V 의 외부 바이어스 서플라이가 필요합니다. IC 손상이 우려되므로 15V 보다 큰 전압을 인가하지 마십시오.

이 파워 서플라이에는 단락 보호 기능이 있지만 출력 과전압 보호 기능은 없습니다. TL431(U3) 또는 옵토커플러(U2)를 비활성화하여 과전압 테스트를 수행하면 출력 전압이 과도하게 상승하여 출력 쇼트키 정류기(D2-D3)가 파열 및 파괴됩니다. 따라서 과전압 보호 회로를 추가하지 않은 상태에서는 테스트를 수행하면 안 됩니다.

버스트 모드 기능은 일반적으로 경부하 및 높은 입력 전압 상태에서 약간 더 높은 리플 전압을 일으킬 수 있습니다. 이 설계에서는 LCS700HG 의 버스트 모드 2¹가 선택되었습니다.

적용 가능한 사양에 따라 적절한 커패시턴스 C3 값을 선택하여 소프트 스타트 성능을 최적화할 수 있습니다.

이 설계에서는 표면 실장용 쇼트키 다이오드 정류기를 사용합니다. 이 설계를 사용할 때전압 디레이팅(De-rating) 요건을 만족하는지에 대해 신중하게 평가해야 합니다. 더 높은 정격의 부품을 사용할 경우, 디레이팅(De-rating) 요건에 맞게 바꿔야 합니다.

¹ 자세한 내용은 버스트 모드 동작에 대한 HiperLCS 데이터 시트를 참조하십시오.

2 소개

이 문서는 LCS700HG 집적 LLC 컨트롤/파워단 IC 를 사용하는 12V/24V, 100W LLC DC-DC 공진형 컨버터에 대해 설명하는 엔지니어링 보고서입니다. 이 파워 서플라이는 LED 백라이트를 사용하는 LCD TV 용으로 설계되었습니다. 보드에는 +12VDC 및 +380VDC 입력이 필요합니다.

이 문서에는 파워 서플라이 사양, 회로도, 부품 목록(BOM), 트랜스포머 규격서, 인쇄 회로 기판 레이아웃 및 성능 데이터가 들어 있습니다.

그림 1 - 소자 회로 기판 사진, Top 면(L: 136.27 mm x W: 79.88mm).

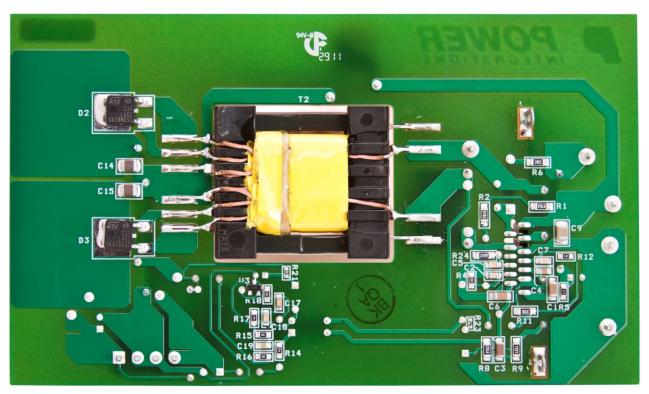


그림 2 – 소자가 장착된 회로 기판 사진(Bottom 면).

3 파워 서플라이 사양

아래 표는 설계의 최소 허용 성능을 나타냅니다. 실제 성능은 결과 섹션에 나열되어 있습니다.

설명	기호	최소	일반	최대	단위	설명
입력 전압	V _{IN}	300	380	420	VDC	DC 입력만
출력 출력 전압 1 출력 P-P 리플 전압 1 출력 전류 1	V _{OUT1} V _{RIPPLE1} I _{OUT1}	11.4	12 2.33	12.6 120 3.00	V mV A	±5% 20MHz 대역폭 양쪽 출력의 총 부하 ≤100W
출력 전압 2 출력 P-P 리플 전압 2 출력 전류 2	$oldsymbol{V_{OUT2}}{oldsymbol{V_{RIPPLE2}}} oldsymbol{I_{OUT2}}$	22.8 0.01	3.00	25.2 240 3.00	V mV A	±5% 20MHz 대역폭 양쪽 출력의 총 부하 ≤100W
총 출력 전력 연속 출력 전력 피크 출력 전력	P _{OUT}			100 100	W W	
효율 20% 부하 50% 부하	η	89.5 93.3	90 94		%	DC-DC 컨버터 목표 효율, 25°C, 380VDC 입력에서 측정 DC-DC 컨버터 목표 효율,
100% 부하	η η	93.3	94.5		%	25°C, 380VDC 입력에서 측정 DC-DC 컨버터 목표 효율, 25°C, 380VDC 입력에서 측정

4 회로도

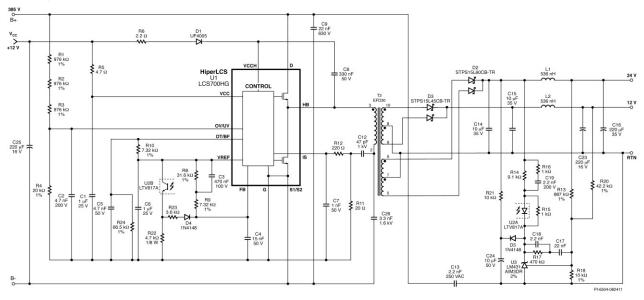


그림 3 - 회로도

5 회로설명

그림 3 의 회로도는 LCD TV 애플리케이션용 LCS700HG 디바이스를 구현하는 12V/24V, 100W LLC DC-DC 컨버터입니다. 이 회로가 동작하려면 +12V 및 +380V 입력 서플라이가 필요합니다.

보드가 올바르게 동작하도록 하려면 단자에 바로 배치된 +380V 의 입력과 그라운드 사이에 최소 10uF 의 벌크 커패시터를 함께 사용해야 합니다.

15V 보다 큰 전압을 12V 입력에 적용하지 마십시오. IC 가 손상됩니다.

5.1 1 차측

집적 회로 U1 은 LLC 공진형 하프 브리지 컨버터에 필요한 컨트롤 회로, 드라이버 및 출력 장치를 포함하고 있습니다. U1 의 HB 출력 핀은 블로킹/공진 커패시터(C26)를 통해 출력 트랜스포머 T2로 연결됩니다. 이 커패시터의 정격은 동작 리플 전류를 만족해야 하며 고장 조건 중의 전압을 견딜 수 있는 정격 전압을 선택해야 합니다. 커패시터 C26은 이러한 요건을 충족합니다.

트랜스포머 T2 는 100μH 의 누설 인덕턴스에 맞게 설계되어 있으며, 공진 커패시터 C26 를 포함하고 1 차측 직렬 공진 주파수를 약 280kHz 으로 설정하며 그 공식은 다음과 같습니다.

$$f_R = \frac{1}{6.28\sqrt{L_L \times C_R}}$$

여기서 f_R 은 Hz 단위의 직렬 공진 주파수이며, L_L 은 헨리 단위의 트랜스포머 누설 인덕턴스이고 C_R 은 패럿 단위의 공진 커패시터(C26) 값입니다.

트랜스포머 권선비는 1 차측 턴 수를 조정하여 설정되었으므로 정격 입력 전압과 풀 부하시 동작 주파수는 앞서 설명된 공진 주파수에 근접하지만 그보다 약간 낮습니다. 2 차측 턴 수를 코어 및 구리의 손실을 절충하여 선택했습니다. 1 차측과 2 차측 용으로 AWG #42 리츠선이 사용되었습니다. 이 게이지는 약 270kHz 에서 우수한 효율성을 발휘합니다. 각 가닥 수를 피드 및 구리 손실의 균형을 맞추어 선택했습니다. 코어 재료는 Ferroxcube 3F3 으로, 고주파 동작에 적합하며 TDK PC95 도 적합합니다. 270kHz 동작 주파수는 트랜스포머 크기. 출력 필터 커패시턴스와 효율성의 균형을 고려하여 설정된 값입니다.

U1 상단 드라이버를 구동하는 부트스트랩 회로는 D1, R6, C8 으로 구성되어 있습니다. R5 및 C1 은 +12V 입력을 필터링하고 바이패스합니다. R1 과 R4 사이의 전압 분배기는 U1 의 과전압 기준값 및 고전압 턴 온을 설정합니다. 전압 분배 값은 360VDC 에서 LLC 턴 온 기준값을, 285VDC 에서 턴 오프 기준값을 설정하고 473VDC 에서는 정격 입력 과전압으로 설정하도록 선택되어 있습니다.

커패시터 C9는 +380V 입력을 위한 고주파 바이패스 커패시터입니다.

커패시터 C12 는 C26 과 함께 전류 분배기를 형성하며 1 차측 전류를 센싱하는 데 사용됩니다. 저항 R11 이 이 전류를 감지하고 결과 신호는 R12 및 C7 에 의해 필터링됩니다. 커패시터 C12 는 필름 또는 NPO/COG 세라믹 같이 안정적이고 손실이 낮은 유전체를 사용해야 하며, 고장 상태에서의 피크 전압에 맞춰 다시 지정되어야 합니다. 선택한 값은 다음 공식에 따라 약 3.2A 에서 1 사이클(빠름)의 전류 제한을, 약 1.8A 에서는 8 사이클(느림)의 전류 제한을 설정합니다.

$$I_{CL} = \frac{0.5}{\left(\frac{C12}{C26 + C12}\right)(R11)}$$

 I_{CL} 은 암페어 단위의 8사이클 전류 제한, R11 은 옴 단위, C26 및 C12 는 나노 패럿 단위의 공진 및 전류 샘플링 커패시터 값입니다. 위 공식에서 1사이클 전류 제한의 경우 0.5V를 0.9V로 바꿉니다.

저항 R12 및 커패시터 C7 은 1 차측 전류 신호를 IS 핀으로 필터링합니다. 저항 R12 의 허용 가능한 최대값은 220Ω입니다. C7 값은 노이즈로 인한 불필요한 고장을 방지하기 위해 1nF 로 설정되나 위에 계산된 대로 전류 제한 설정 값에 실제로 영향을 줄만큼 높지는 않습니다. 이들 부품은 IS 핀에 직접 연결되어야 효율성을 최대로 발휘할 수 있습니다.

저항 R10 은 데드 타임을 320ns 으로 설정합니다. FEEDBACK(FB) 핀은 μA 당 약 2.6kHz 이 FB 핀에 공급되도록 설정되어 있습니다. FB 핀으로 공급되는 전류는 U1 의 동작 주파수를 증가시키고 출력 전압을 감소시킵니다. 직렬로 연결된 R8 과 R9 의 경우 U1 의 최소 동작 주파수를 설정합니다. 이 값은 일반적으로 출력 및 최소 벌크 커패시터 전압에서 풀 부하 시 레귤레이션에 필요한 주파수보다 다소 낮게 설정됩니다. 저항 R8 은 C3 에 의해 바이패스되어 스타트업 시 출력 소프트 스타트를 실행시켜 피드백 루프 오픈 시 처음에 더 높은 전류가 FB 핀으로 흐르게 합니다. 그러면 시작되는 스위칭 주파수가 높아진 후 출력 전압이 레귤레이션될 때까지 감소됩니다. 저항 R9 는 일반적으로 R10 과 동일한 값으로 설정되므로 소프트 스타트 시 초기 주파수는 R10 에 의해 설정된 값과 마찬가지로 최대 스위칭 주파수와 동일합니다. R9 값이 R10 의 값보다 작은 경우 스위칭이 시작되기 전에 지연 발생의 원인이 됩니다.

옵토커플러 U2는 IC U1의 피드백 핀을 구동합니다. 커패시터 C4는 FB 핀을 필터링합니다. 15nF 커패시터는 C4용으로 선택된 것으로 FB 핀에서 커플링된 노이즈로 인한 1차측 듀티사이클의 비대칭을 방지합니다. C4 값을 높게 올릴 경우, 일반적으로 불안정한 결과를 얻게됩니다.

저항 R22 는 옵토커플러에서 부하를 제공하며 버스트 모드 중 큰 신호 과도 응답을 가속화합니다. 권장되는 값은 약 4.7kΩ입니다. 다이오드 D4 는 옵토커플러가 차단될 경우 R22 에서 R8 을 로드하지 않도록 합니다. 저항 R23 은 ESD 및 PSU 의 서지 내성은 물론 버스트 모드 출력 리플 전압을 개선합니다. 최대값은 옵토커플러가 포화 상태이고 FB 핀이 2.0V 일 경우에 FB 핀 전류가 DT/BF 핀 전류와 동일해야 합니다(PIXIs HiperLCS 스프레드시트 참조). 이 경우 피드백 루프에서 스위칭 주파수가 F_{STOP} 미만으로 드롭되지 않도록 하므로 HiperLCS 가 스타트업 모드를 종료한 상태가 아닌 경우, F_{MAX}에서 버스트하여 경부하 시 레귤레이션할 수 있는지 확인해야 합니다.

버스트 모드에서 파워트레인은 ZVS 의 부분적인 손실을 경험할 수 있습니다(충분하지 않은 ZVS). 스위칭 펄스의 많은 부분에서 ZVS 가 손실되면 효율성이 저하됩니다. 특정 범위의 입력 전압 및 부하에서는 효율성이 크게 떨어지는 경우도 있습니다. 이러한 현상은 버스트 듀티 사이클이 높고(15~30%) 대부분의 펄스에서 ZVS 손실이 큰 경우에 발생할 수 있습니다. 또한 높은 입력 전압과 경부하(예: 1% 부하, 420VDC) 시에는 더 악화되기도 합니다. ZVS 가 손실되면 디바이스가 과열되고 셧다운되거나 손상될 수 있습니다. 데드타임이 줄고(FMAX 높임) FSTART 가 증가하면 상태가 악화되는데, 이는 동작 주파수가 높을수록 트랜스포머 자기 전류가 감소되므로 결국 MOSFET 출력 커패시턴스(Coss)를 충전하고 방전하기 위해 트랜스포머에 저장된 에너지가 줄어드는 것입니다. 실제 설계에서 PFC 출력 전압은 이례적으로 높은 값에서 무한정 유지되는 것은 아니며, 부하 급변동시에 약간의 시간이 지나면 정격으로 돌아옵니다. 즉, 버스트 모드의 ZVS 손실 여부를확인할 때 최대 정격 PFC 출력 전압만을 고려해야 함을 의미합니다.

5.2 출력 정류

트랜스포머 T2 의 출력은 다이오드 D2 및 D3 과 커패시터 C14 및 C15 에 의해 정류되고 필터링됩니다. 이러한 커패시터는 출력 리플 정격 전류에 대해 신중하게 선택된 X5R 유전체입니다. 이 애플리케이션의 경우 표준 Z5U 유전체 커패시터는 효과가 없습니다. L1, L2, C16 및 C23 에서 추가적으로 필터링됩니다. 저항 R13, R20 및 R18 은 U3 레퍼런스 전압에 따라 서플라이의 출력 전압을 설정합니다. 전압 센싱 저항은 전체 레귤레이션에서 12V 출력을 제공하도록 설정되어 있습니다. 에러 앰프 U3 은 R14 를 통해 피드백 옵토커플러 U2 를 구동합니다. 부품 C17-19 및 R14-17 은 컨버터의 게인-위상 특성을 결정합니다.

추가 정보 스마트폰과

www.neoreader.com 에서 제공되는 무료 소프트웨어(또는 스마트폰의 앱 스토어에서 제공되는 다른 모든 무료 QR 코드 리더기)를 사용하면 당사 웹 사이트

6 PCB 레이아웃

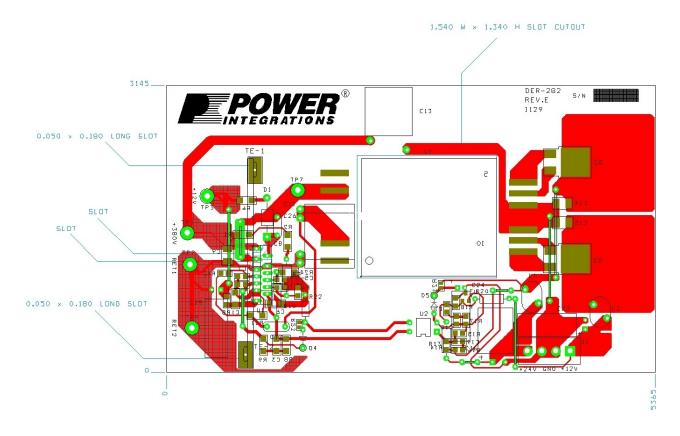


그림 4 - 인쇄 회로 기판 레이아웃

7 부품 목록

항목	수량	레퍼런스 설계	설명	부품 제조 번호	Mfg
1	2	C1 C6	1μF, 25V, 세라믹, X7R, 1206	C3216X7R1E105K	TDK
2	1	C2	4.7nF, 200V, 세라믹, X7R, 0805	08052C472KAT2A	AVX
3	1	C3	470nF, 100V, 세라믹, X7R, 1206	C3216X7R2A474K	TDK
4	1	C4	15nF, 50V, 세라믹, X7R, 0805	ECJ-2VB1H153K	Panasonic
5	1	C5	4.7nF, 50V, 세라믹, X7R, 0805	ECJ-2VB1H472K	Panasonic
6	1	C7	1nF, 50V, 세라믹, X7R, 0805	ECJ-2VB1H102K	Panasonic
7	1	C8	330nF, 50V, 세라믹, X7R	B37984M5334K000	Epcos
8	1	C9	22nF, 630V, 세라믹, X7R, 1210	GRM32QR72J223KW01L	Murata
9	1	C12	47pF, 1,000V, 디스크 세라믹	561R10TCCQ47	Vishay
10	1	C13	2.2nF, 세라믹, Y1	440LD22-R	Vishay
11	2	C14 C15	10μF, 35V, 세라믹, X5R, 1210	GMK325BJ106KN-T	Taiyo Yuden
12	1	C16	220μF, 35V, 전해, 낮은 ESR, 90mΩ, (8x15)	ELXZ350ELL221MH15D	Nippon Chemi- Con
13	1	C17	22nF, 200V, 세라믹, X7R, 0805	08052C223KAT2A	AVX
14	1	C18	2.2nF, 200V, 세라믹, X7R, 0805	08052C222KAT2A	AVX
15	1	C19	2.2nF, 50V, 세라믹, X7R, 0805	ECJ-2VB1H222K	Panasonic
16	2	C23 C25	220μF, 16V, 전해, 낮은 ESR, 180mΩ, (6.3x15)	ELXZ160ELL221MF15D	Nippon Chemi- Con
17	1	C24	10μF, 50V, 전해, 범용, (5 x 11)	EKMG500ELL100ME11D	Nippon Chemi- Con
18	1	C26	3.3nF, 1,600V, 필름	B32652J1332J	Epcos
19	1	D1	600V, 1A, 초고속 복구, 75ns, DO-41	UF4005-E3	Vishay
20	1	D2	60V, 7.5A, 쇼트키, SMD, DPAK	STPS15L60CB-TR	ST
21	1	D3	45V, 7.5A, 듀얼 쇼트키, TO-252AA(D-PAK)	STPS15L45CB-TR	ST
22	2	D4 D5	75V, 300mA, 빠른 스위칭, DO-35	1N4148TR	Vishay
23	1	ESIPCLIP M4 METAL1	히트싱크 하드웨어, 엣지 클립, 20.76mm L x 8mm W x 0.015mm Thk	NP975864	Aavid Thermalloy
24	1	GREASE1	써멀 그리스, 실리콘, 5oz 튜브	CT40-5	ITW Chemtronics
25	1	HS1	히트싱크, 커스텀, Al, 3003, 0.62 Thk	0.100	커스텀
26	1	J1	4 위치(1 x 4) 헤더, 0.156 피치, 수직형	26-48-1045	Molex
27	4	JP1 JP2 JP3 JP4	와이어 점퍼, [고온 - 예: 테프론] 절연, #22AWG, 1in	2855/1 WH005	AlphaWire
28	2	JP5 JP6	와이어 점퍼, [고온 - 예: 테프론] 절연, #22AWG, 12.70mm	2855/1 WH005	AlphaWire
29	2	JP7 JP8	와이어 점퍼, [고온 - 예: 테프론] 절연, #22AWG, 6.35mm	2855/1 WH005	AlphaWire
30	2	L1 L2	536nH, 파워 아이언 토로이드, 2 핀, 출력		
31	1	NUT1	Nut, Hex, Kep 4-40, S ZN Cr3 도금 RoHS	4CKNTZR	RoHS 를 준수하는 모든 제조업체.
32	2	R1 R2	976kΩ, 1%, 1/4W, 두꺼운 필름, 1206	ERJ-8ENF9763V	Panasonic
33	1	R3	976kΩ, 1%, 1/4W, 금속 필름	MFR-25FBF-976K	Yageo
34	1	R4	20kΩ, 1%, 1/8W, 두꺼운 필름, 1206	ERJ-6ENF2002V	Panasonic
35	1	R5	4.7Ω, 5%, 1/8W, 두꺼운 필름, 0805	ERJ-6GEYJ4R7V	Panasonic
36	1	R6	2.2Ω, 5%, 1/4W, 두꺼운 필름, 1206	ERJ-8GEYJ2R2V	Panasonic
37	1	R8	31.6kΩ, 1%, 1/4W, 두꺼운 필름, 1206	ERJ-8ENF3162V	Panasonic
38	1	R9	7.32kΩ, 1%, 1/4W, 두꺼운 필름, 1206	ERJ-8ENF7321V	Panasonic
39	1	R10	7.32kΩ, 1%, 1/4W, 금속 필름	MFR-25FBF-7K32	Yageo
40	1	R11	20Ω, 5%, 1/4W, 두꺼운 필름, 1206	ERJ-8GEYJ200V	Panasonic

41	1	R12	220Ω, 5%, 1/8W, 두꺼운 필름, 0805	ERJ-6GEYJ221V	Panasonic
42	1	R13	887kΩ, 1%, 1/4W, 금속 필름	MFR-25FBF-887K	Yageo
43	1	R14	9.1kΩ, 5%, 1/8W, 두꺼운 필름, 1206	ERJ-6GEYJ912V	Panasonic
44	2	R15 R16	1kΩ, 5%, 1/8W, 두꺼운 필름, 1206	ERJ-6GEYJ102V	Panasonic
45	1	R17	470kΩ, 5%, 1/8W, 두꺼운 필름, 1206	ERJ-6GEYJ474V	Panasonic
46	1	R18	10kΩ, 1%, 1/8W, 두꺼운 필름, 1206	ERJ-6ENF1002V	Panasonic
47	1	R20	42.2kΩ, 1%, 1/4W, 금속 필름	MFR-25FBF-42K2	Yageo
48	1	R21	10kΩ, 5%, 1/10W, 두꺼운 필름, 0603	ERJ-3GEYJ103V	Panasonic
49	1	R22	4.7kΩ, 5%, 1/8W, 탄소 필름	CFR-12JB-4K7	Yageo
50	1	R23	3.6kΩ, 5%, 1/10W, 두꺼운 필름, 0603	ERJ-3GEYJ362V	Panasonic
51	1	R24	66.5kΩ, 1%, 1/4W, 두꺼운 필름, 1206	ERJ-8ENF6652V	Panasonic
52	1	SCREW1	나사 절삭기 PHIL 4-40 X 1/4 SS	PMSSS 440 0025 PH	Building Fasteners
53	1	T2	커스텀 트랜스포머, EFD30, Horz, 10 핀(1 차측 4 x 2 차측 6)		Power Integrations
54	1	TE1 TE2	단자, Eyelet, 주석 도금 황동, Zierick PN 190	190	Zierick
55	1	TP1	테스트 지점, YEL, 스루홀 장착	5014	Keystone
56	2	TP2 TP4	테스트 지점, BLK, 스루홀 장착	5011	Keystone
57	1	TP3	테스트 지점, RED, 스루홀 장착	5010	Keystone
58	1	TP7	테스트 지점, WHT, 스루홀 장착	5012	Keystone
59	1	U1	HiperLCS, ESIP16/13	LCS700HG	Power Integrations
60	1	U2	옵토커플러, 35V, CTR 80-160%, 4-DIP	LTV-817A	Liteon
61	1	U3	IC, REG ZENER SHUNT ADJ SOT-23	LM431AIM3/NOPB	National Semi
62	1	WASHER1	평와셔 #4 SS	FWSS 004	Building Fasteners

트랜스포머 사양

8.1 전기적 구성도

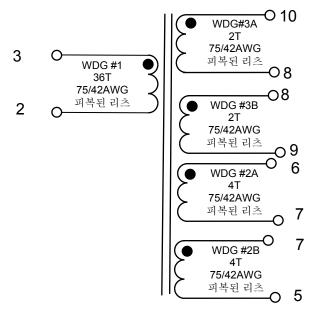


그림 5 - 트랜스포머 전기적 구성도

8.2 전기적 사양

전기적 강도	1 초, 60Hz(3-2 ~ 6-10)	500VAC
1 차측 인덕턴스	핀 3-2, 다른 모든 권선이 오픈된 상태, 100kHz, 0.4V _{RMS} 에서 측정	440μH ±5%
공진 주파수	3-2 핀, 다른 모든 권선이 오픈된 상태	1,400kHz(최소값)
1 차측 누설 인덕턴스	핀 3-2(핀 5, 6, 7, 8, 9, 10 단락), 100kHz, 0.4V _{RMS} 에서 측정	100μΗ

항목	설명
[1]	코어 한 쌍: EFD30 Ferroxcube 3F3 재료 또는 등가
[2]	보빈: EFD30 가로, 10 핀(1 차측 4 x 2 차측 6) 커스텀 SMT 보빈
[3]	테이프: 폴리에스터 웹: 3M #44 또는 등가, 폭 3.0mm
[4]	테이프: 폴리에스터 필름, 3M 1350F-1 또는 등가, 폭 12.2mm
[5]	테이프: 폴리에스터 필름, 3M 1350F-1 또는 등가, 폭 5mm
[6]	마그넷 와이어: 75/#42 단일 도포 피복된 리츠선
[7]	트랜스포머 함침, Dolph BC-359 또는 등가

참고: 일부 애플리케이션의 경우, 안전 요구 사항을 충족하도록 트랜스포머를 재설계해야 할 수 있습니다.

8.4 트랜스포머 제작 구성도

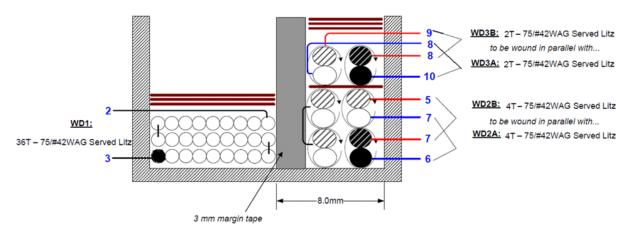


그림 6 - 트랜스포머 제작 구성도.

8.5 보빈 - 번호 지정 규칙

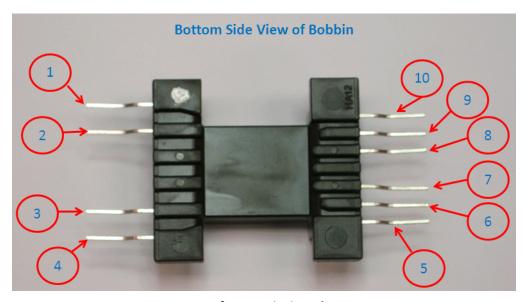
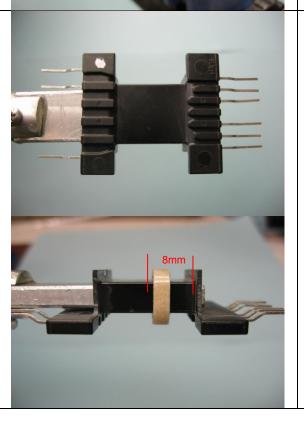


그림 7 - 보빈 핀 규칙

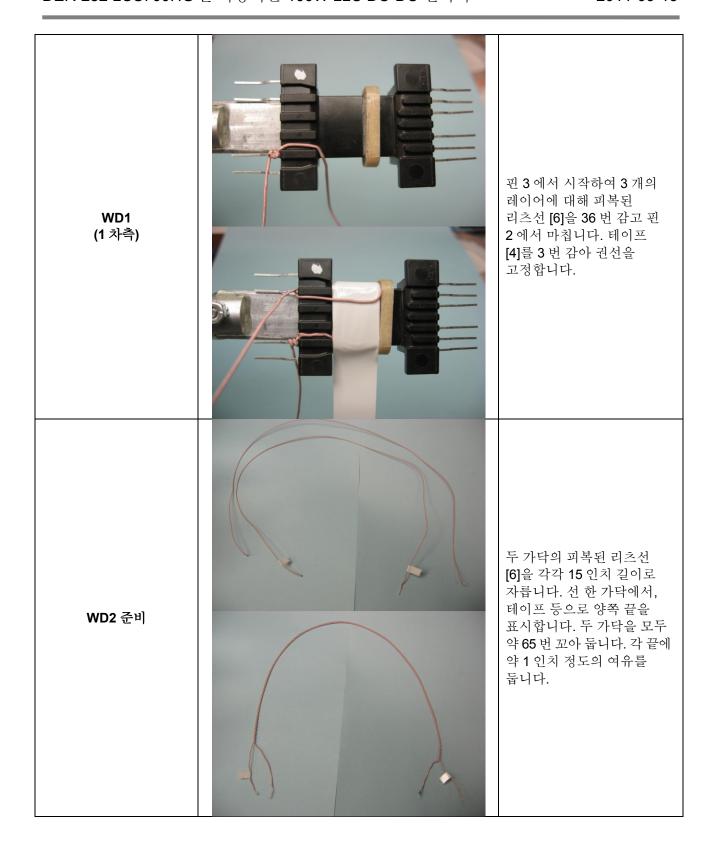
8.6 트랜스포머 구성

권선 준비	코어 반쪽을 적절하게 맞추기 위해 가는 줄을 사용하여 1 차측과 2 차측 양단에 있는 짧은 플랜지에서 보빈 재료의 약 0.5mm를 제거합니다. 그림과 같이 마진 테이프 [3]을 보빈 오른쪽에서 8mm 떨어진 지점에 맞춥니다.
WD1 (1 차측)	그림의 위치에서 시작하여 리츠선 [6]을 36 번 감습니다(약 3 개 레이어). 권선을 고정하기 위해 테이프 [4]를 1 회 감습니다.
2 차측 권선 준비	두 가닥의 리츠선 항목 [6](끝을 주석 처리)을 15" 길이로 준비하여 각 양단에 1" 정도의 여유를 남긴 상태에서 두 가닥을 모두 약 65 번 고르게 꼬아 둡니다. 이 케이블의 한쪽 끝은 6 과 7 이고, 다른 쪽 끝은 7 과 5 가 됩니다.
WDG2A 및 WDG2B (2 차측)	그림과 같이 6 과 7에서 시작하여 마진 테이프와 보빈 오른쪽 사이의 섹션에서 4 번 감고 표시된 대로 7 과 5 에서 마칩니다.
절연	테이프 [5]를 한 번 감아 권선을 고정합니다.
1	1 1 - [6] C C C C C C C C C C C C C C C C C C C
2 차측 권선 준비	두 가닥의 리츠선 [6](끝을 주석 처리)을 7.5" 길이로 준비하고 각 양단에 1" 정도의 여유를 남긴 상태에서 가닥을 모두 약 30 번 고르게 꼬아 둡니다. 이 케이블의 한쪽 끝은 10 과 8 이고, 다른 쪽 끝은 8 과 9 가 됩니다.
	두 가닥의 리츠선 [6](끝을 주석 처리)을 7.5" 길이로 준비하고 각 양단에 1" 정도의 여유를 남긴 상태에서 가닥을 모두 약 30 번 고르게 꼬아 둡니다.
2 차측 권선 준비 WDG3A 및 WDG3B	두 가닥의 리츠선 [6](끝을 주석 처리)을 7.5" 길이로 준비하고 각 양단에 1" 정도의 여유를 남긴 상태에서 가닥을 모두 약 30 번 고르게 꼬아 둡니다. 이 케이블의 한쪽 끝은 10 과 8 이고, 다른 쪽 끝은 8 과 9 가 됩니다. 그림과 같이 10 과 8 에서 시작하여 마진 테이프와 보빈 오른쪽 사이의 섹션에서


8.7 권선 그림

보빈 준비

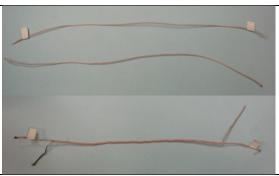
.5mm


코어 반쪽을 정확하게 맞추기 위해 가는 줄을 사용하여 1 차측과 2 차측 양단에 있는 짧은 플랜지에서 보빈 재료의 약 0.5mm 를 제거합니다.

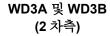
배리어 테이프

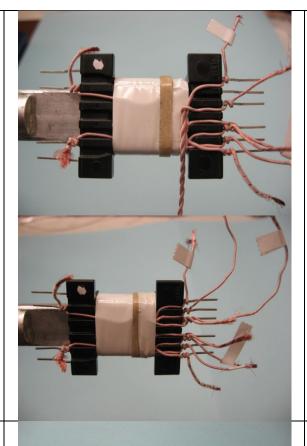
보빈 항목 [2]를 핀 1 이 왼쪽에 오도록 배치합니다.

2 차측 플랜지에서부터 8mm 떨어진 지점에 3mm 배리어 테이프 [3]을 20 번 감습니다. 테이프 높이는 보빈 플랜지 높이와 같아야 합니다.



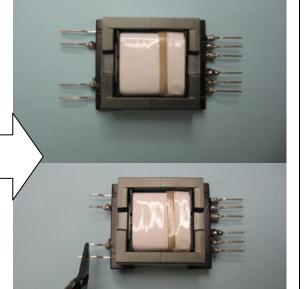
이전 단계에서 준비한 피복된 리츠 어셈블리를 사용하여 핀 6 에 표시한 끝과 핀 7 에 표시하지 않은 끝에서 시작하여 4 번 감습니다. 핀 7 의 표시한 끝과 핀 5 의 표시하지 않은 끝에서 마칩니다. 테이프 [5]를 한 번 감아 권선을 고정합니다.


WD3 준비


WD2A 및 WD2B

(2 차측)

두 가닥의 피복된 리츠선 [6]을 각각 7 인치 길이로 자릅니다. 선 한 가닥에서, 테이프 등으로 양쪽 끝을 표시합니다. 두 가닥을 모두약 30 번 꼬아 둡니다. 각 끝에 약 1 인치 정도의 여유를 둡니다.



이전 단계에서 준비한 피복된 리츠 어셈블리를 사용하여 핀 10 에 표시한 끝과 핀 8 에 표시하지 않은 끝에서 시작하여 2 번 감습니다. 핀 8 의 표시한 끝과 핀 9 의 표시하지 않은 끝에서 마칩니다. 테이프 [5]를 3 번 감아 권선을 고정합니다.

보빈의 센터에 맞추어 코어 조립

모든 와이어 터미네이션을 납땜합니다.

핀 2 와 3 사이에서 440μH ±5%의 인덕턴스에 대해 코어 반쪽 한 개 [1]의 센터를 연마합니다. 1 차측의 연마된 코어를 사용하여 코어 반쪽을 조립하고 고정합니다(그림의 왼쪽).

각 보빈 핀에서 3.5mm 를 트리밍합니다.

피니쉬(con't)

[7]를 함침합니다.

9 출력 인덕터 사양

인덕터 L1 및 L2 는 Micrometals T30-26 분말 철 토로이드에서 #22AWG 마그넷 와이어를 각각 4 번 감은 것입니다.

9.1 전기적사양

이더터스	핀 FL1-FL2, 다른 모든 권선이 오픈된 상태, 100kHz,	536nH, ±15%
U 7 U	0.4V _{RMS} 에서 측정	3301111, ±1370

9.2 재료 목록

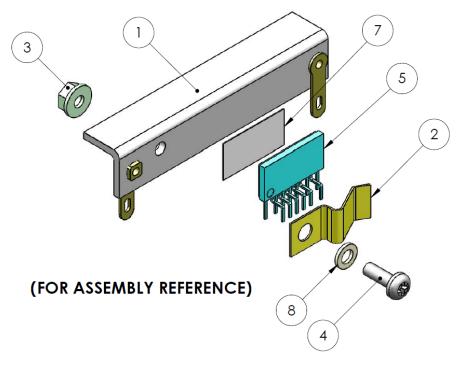
항목	설명
[1]	분말 철 트로이드 코어: Micrometals T30-26
[2]	마그넷 와이어: #22 AWG, 납땜 가능한 이중 도포

10 LLC 공진 컨버터 설계 스프레드시트

HiperLCS_041311, Rev.1.0, Copyright Power Integrations 2011	입력	정보	출력	단위	HiperLCS_041311_Rev1-0.xls, HiperLCS 하프 브리지, 연속 모드 LLC 공진 컨버터 설계 스프레드시트
입력 파라미터 입력			•		
VBULK_NOM			380	V	정격 LLC 입력 전압
Vbrownout			280	V	브라운아웃(Brownout) 기준값 전압. 전압이 이 값 아래로 떨어지면 HiperLCS 가 셧다운됩니다. 허용되는 값은 VBULK_NOM 의 65%에서 76% 사이입니다. 최대 출력 유지 시간을 65%로 설정합니다
Vbrownin			353	V	벌크 커패시터의 스타트업 기준값
VOV_shut			465	V	벌크 전압의 OV 보호
VOV_restart			448	V	OV 보호 후 리스타트 전압
CBULK			69	uF	유지 시간 요구 사항을 충족하기 위해 벌크 커패시터 값 최소화, 유지 시간 및 Vbulkmin 을 조정하여 벌크 커패시터 값 변경
tHOLDUP			21.8	ms	벌크 커패시터 출력 유지 시간
1100 원칙 초리 이러					스프레드시트에서는 2 차측의 AC 적충을
LLC(2 차측) 출력 입력					가정합니다
VO1	12.00		12.0	V	메인 출력 전압. 스프레드시트에서는 레귤레이션된 출력이라고 가정합니다
IO1	2.32		2.3	Α	메인 출력 최대 전류
VD1	0.60		0.60	V	메인 출력의 다이오드 순방향 전압
PO1			28	W	1 차 LLC 출력의 출력 전력
VO2	24.00		24.0	V	2 차 출력 전압
102	3.00		3.0	Α	2차 출력 전류
VD2	0.60		0.60	V	2차 출력의 다이오드 순방향 전압
PO2			72.00	W	2 차 LLC 출력의 출력 전력
P_LLC			100	W	지정된 LLC 출력 전력
LCS 디바이스 선택					•
디바이스	자동		LCS700		LCS 디바이스
RDSON(최대)			2.78	Ω	선택한 디바이스의 RDSON(최대)
Coss			125	pF	선택한 디바이스의 등가 Coss
Cpri			40	pF	1 차측 트랜스포머의 부유 커패시턴스
PCOND_LOSS			1.3	W	정격 라인 및 풀 부하의 전도성 손실
TMAX_HS			90	°C	최대 히트싱크 온도
Theta J-HS			10.1	°C/W	열 저항 정션-히트싱크(그리스 포함 및 절연체 제외)
예상 정션 온도			103	°C	예상 정션 온도
Ta max			50	°C	예상 최대 주변 온도
Theta HS-A			31	°C/W	필요한 열 저장 히트싱크-주변
LLC 공진 파라미터 및 5	트랜스포머 계신	<u>}(</u> 빨간색 =	곡선 생성)		
Ро			103	W	LLC 컨버터의 출력(다이오드 손실 포함)
Vo			12.60	V	트랜스포머 권선에서의 메인 출력(다이오드 전압 강하 포함)
f_target			250	kHz	PFC 및 LLC 의 필요한 풀 부하 스위칭 주파수. 66kHz-300kHz, 250kHz 권장
Lpar			340	uH	병렬 인덕턴스. (Lpar = Lopen - Lres(집적 트랜스포머), Lpar = Lmag(비집적 낮은 누설 트랜스포머))
Lpri	440.00		440	uH	집적 트랜스포머의 경우 1 차측 오픈 회로 인덕턴스, 낮은 누설 트랜스포머의 경우 1 차측 인덕턴스와 직렬 인덕터의 합계. 비어 있는 경우 자동 계산되어 ZVS 손실에 대해 필요한 값을 Vnom 의 80%로 표시합니다

				집적 트랜스포머의 직렬 인덕턴스 또는 1 차측
Lres	100.00	100.0) uH	
				계산이 실행됩니다
Kratio		3.4		Lpar 과 Lres 의 비율. 2.1 < K < 11 이 되도록 K
Tuduo		0.4		값을 유지합니다. 기본 설정 Lres 는 K<7 입니다
				직렬 공진 커패시터. 빨간색 배경 셀에서 빨간색
Cres	3.30	3.3	nF	그래프가 생성됩니다. Lpar, Lres, Cres 및
Oics	3.30	0.0		n_RATIO_red_graph 들 비워 두면 자동으로
				계산됩니다
				메인 출력 1 개 위상의 2 차측 인덕턴스. 값을 측정
Lsec		1.358	3 uH	
				때까지 값을 조정합니다
m		50	%	누출 분산 요소(1 차측과 2 차측 사이). 99%는
III		50	70	누출이 대부분 1 차측에 있음을 나타냅니다
n_eq		15.82	2	LLC 등가 회로 이상적인 트랜스포머의 권선비
Npri	36.0	36.0		1 차측 권선 턴 수. 입력을 비워 두면 f_predicted =
Мрп	30.0	30.0		f_target 이 되도록 기본값이 자동 계산됩니다
Nsec	2.0	2.0		2 차측 턴 수(메인 출력의 각 위상). 기본값은
NSEC	2.0	2.0		BAC<=2000 가우스를 유지하는 것으로 예상
f predicted		247	kHz	정격 입력 전압 및 풀 부하의 예상 주파수. n_Ratio
i_predicted		247	KIIZ	및 1 차측 턴 수의 영향을 크게 받습니다
f_res		277	kHz	고 직렬 공진 주파수(직렬 인덕턴스 Lres 및 C 로 정의)
f_brownout		192	kHz	VBULK_MIN, 풀 부하의 스위칭 주파수
f_par		132	kHz	병렬 공진 주파수(Lpar+Lres 및 C 로 정의)
				최소 주파수(Vbrownout 및 풀 부하 시). HiperLCS
f inversion		179	kl.1=	최소 주파수를 이 값으로 설정합니다. 이 주파수
f_inversion		179	kHz	아래에서 동작하면 게인 반전 영역에서 동작하지
				않게 됩니다
Vinversion		252	V	낮은 주파수 게인 반전 지점 전에 LLC 파워트레인의
		202	V	최소 입력 전압. 최적 값은 동일한 Vbrownout 입니다
RMS 전류 및 전압				
IRMS_LLC_Primary		0.68	А	1 차측 권선 RMS 전류(풀 부하 및 정격 입력
		0.00	, ,	전압(Vbulk) 시) 및 fnominal_actual
권선 1(낮은 2차측		4.1	А	권선 1(낮은 2 차측 전압) RMS 전류
전압) RMS 전류				22 (// 22 / / 24/ 1886 27/
낮은 2 차측 커패시터		1.1	А	낮은 2 차측 커패시터 RMS 전류
RMS 전류				X22 PPPPPPPPP
권선 2(높은 2 차측		2.3	А	권선 2(높은 2 차측 전압) RMS 전류
전압) RMS 전류			, ,	
높은 2 차측 커패시터		1.4	А	높은 2 차측 커패시터 RMS 전류
RMS 전류				
Cres Vrms		133	V	공진 커패시터 AC RMS 전압(풀 부하 및 정격
_				입력 전압)
기준 트랜스포머 시험 -	(파란색 끅선 생	성)		
새로운 1 차측 턴 수		36.0		시험 트랜스포머 1 차측 턴 수. 기본값은 공진
, – , , ,				섹션에서 가져옵니다
새로운 2 차측 턴 수		2.0		시험 트랜스포머 2차측 턴 수. 기본값은 공진
, , , , , , ,				섹션에서 가져옵니다
새 Lpri		440	uH	시험 트랜스포머 오픈 회로 인덕턴스. 기본값은
				공신 섹션에서 가져옵니다
새 Cres	3.30	3.3	nF	직렬 커패시터의 시험 값(비워 두면 계산된 값이
3) = 0 4) 3) 1				선택되어 f_res = f_target)
새로운 예상 Lres		100.0		
새로운 예상 Lpar		340		
새로운 예상 Lsec		1.358		= =
새 Kratio		3.4		시험 트랜스포머의 Lpar 과 Lres 의 비율
새로운 등가 회로		15.82	2	예상 유효 트랜스포머 권선비
트랜스포머 권선비				

새로운 역 V			252	V	벌크 커패시터의 전압으로, 이 값보다 낮으면
파워트레인			232	V	ZVS 가 손실됩니다
f_res_trial			277	kHz	새로운 직렬 공진 주파수
f_predicted_trial			247	kHz	새로운 정격 동작 주파수
IDMC II C Drive em .			0.00		1 차측 권선 RMS 전류(풀 부하 및 정격 입력
IRMS_LLC_Primary			0.68	Α	전압(Vbulk) 시) 및 f_predicted_trial
3)) 40] 0 0 5) 3					출력 1 권선을 통한 RMS 전류, 절반 사인파
권선 1(낮은 2 차측			4.1	Α	파형으로 가정, 출력 2 권선은 출력 1 권선의
전압) RMS 전류					상단에 AC 적충된 것임
낮은 2 차측 커패시터				_	
RMS 전류			1.1	Α	낮은 2 차측 커패시터 RMS 전류
권선 2(높은 2 차측				_	
전압) RMS 전류			2.3	Α	출력 2 권선을 통하는 RMS 전류
높은 2 차측 커패시터				_	1 6 - 2 = 2 2 2 2 - 1 = 2 =
RMS 전류			1.4	Α	높은 2 차측 커패시터 RMS 전류
트랜스포머 코어 계산(공	·진 파라미터 4	넥션에서 계	산)		
트랜스포머 코어	자동		EFD30		트랜스포머 코어
Ae	, ,		0.7	cm^2	트랜스포머 코어 단면적 입력
Ve			4.7	cm^3	코어 부피 입력
Aw			52.3	mm^2	체적
Bw			20.1	mm	총 보빈 폭
DW			20.1	111111	스위칭 주파수 및 BAC 에서 단위 부피당 손실
손실 밀도			200.0	mW/cm^3	그귀장 구파구 및 BAC 에서 한뒤 구퍼당 근실 입력(단위는 kW/m^3 와 동일)
MLT			2.7		[1 년 년 기 년 KW //// (3 가 등 일)
			3.7	cm	보
N_CHAMBERS			2.0		
W_SEP			3.0	mm	권선 격리벽 거리(권선 영역이 손실됨)
전력 손실			0.9	W	예상 코어 손실
Bpkfmin			119	mT	최소 주파수에서의 첫 번째 사분면 피크 자속 밀도
BAC			185	mT	AC 피크-피크 자속 밀도(f_predicted 에서 계산,
					풀 부하에서의 Vbulk)
1 차측 권선			1	T	
Npri			36.0		1 차측 턴 수. LLC 공진 섹션에서 결정
1 차측 게이지	42		42	AWG	1 차측 권선에 사용된 개별 전선 가닥 게이지
등가 1 차측 미터법			0.060	mm	등가 전선 지름(미터 단위)
전선 게이지			0.000		` '
1 차측 리츠 가닥 수	75		75		리츠선의 가닥 수. 리츠가 아닌 1 차측 권선의 경우
1.111-1-2.111	, ,		, 0		1로 설정
1 차측 권선 배분 계수			50	%	1 차측 창 배분 계수 - 1 차측에 할당된 권선
			00	,,	공간의 백분율
AW_P			22	mm^2	1 차측의 권선 체적
필 팩터			57%	%	1 차측 권선의 % 필 팩터(일반적인 최대치는 60%임)
Resistivity_25			79.06	m-ohm/m	저항률(미터당 milli-ohm)
C_Primary					,
1 차측 DCR 25C			105.25	m-ohm	25C 의 예상 저항
1 차측 DCR 100C			141.03	m-ohm	100C 에서의 예상 저항(25C 보다 약 33% 높음)
1 차측 RMS 전류			0.68	Α	1 차측 권선을 통해 측정된 RMS 전류
ACR_Trf_Primary			225.65	m-ohm	측정된 AC 저항(100kHz, 실온), 100C 권선
					온도에 가깝게 하기 위해 1.33 을 곱함
1 차측 구리 손실			0.11	W	85C에서 총 1차측 권선 구리 손실
2 차측 권선 1(낮은 2 차 ^속	측 저안 또는 디	·일 축련)			참조 - 전력 손실 계산은 2 차측의 각 권선 절반에
	,		1	1	대해 수행됩니다
출력 전압			12.00	V	출력 전압(AC 적층 권선을 가정)
2 차측 1 턴 수			2.00		2 차측 권선 턴 수(각 위상)
2 차측 1 RMS					출력 1 권선을 통한 RMS 전류, 절반 사인파
2 사득 1 RMS 전류(합계, AC+DC)			4.1	Α	파형으로 가정, 출력 2 권선은 출력 1 권선의
也开(盲/JI, AU+DU)					상단에 적층된 AC 임


		-	I	
권선 전류(DC 부품)		2.66	Α	권선 전류의 DC 부품
권선 전류(AC RMS 부품)		3.17	Α	권선 전류의 AC 부품
2 차측 1 전선 게이지	42	42	AWG	2 차측 권선에 사용된 개별 전선 가닥 게이지
등가 1 차측 2 미터법 전선 게이지		0.060	mm	등가 전선 지름(미터 단위)
2차측 1 리츠 가닥	75	75		리츠선에 사용된 가닥 수. 리츠가 아닌 비집적 트랜스포머의 경우 1 로 설정
Resistivity_25 C_sec1		79.06	m-ohm/m	저항률(미터당 milli-ohm)
DCR_25C_Sec1		5.85	m-ohm	25C 에서 위상당 예상 저항(참조용)
DCR_100C_Sec1		7.84	m-ohm	100C 에서 위상당 예상 저항(25C 보다 약 33% 높음)
DCR_Ploss_Sec1		0.44	W	DC 저항으로 인한 예상 전력 손실(두 2 차측 위상 모두)
ACR_Sec1		12.54	m-ohm	측정된 위상당 AC 저항(100kHz, 실온), 100C 권선 온도에 가깝게 하기 위해 1.33 을 곱함. ACR 의 기본값은 100C 에서 DCR 값의 두 배입니다
ACR_Ploss_Sec1		0.25	W	예상 AC 구리 손실(두 2 차측 위상 모두)
총 권선 1 구리 손실		0.70	W	두 2 차측 위상에 대한 총(AC+DC) 권선 구리 손실
커패시터 RMS 전류		1.1	A	출력 커패시터 RMS 전류
Co1	10.00	10.0	uF	2차측 1 출력 커패시터
커패시터 리플 전압		1.2	%	2 차측 1 출력 커패시터의 피크-피크 리플 전압 참조 - 전력 손실 계산은 2 차측의 각 권선 절반에
2 차측 권선 2(높은 2 차	측 전압)			대해 수행됩니다
출력 전압		24.00	V	출력 전압(AC 적층 권선을 가정)
2차측 2 턴 수		2.00		2 차측 권선 턴 수(각 위상) 2 차측 권선 1 위에 적충된 AC
2 차측 2 RMS 전류(합계, AC+DC)		2.3	А	출력 2 권선을 통해 측정된 RMS 전류
권선 전류(DC 부품)		1.5	Α	권선 전류의 DC 부품
권선 전류(AC RMS 부품)		1.8	А	권선 전류의 AC 부품
2 차측 2 전선 게이지	42	42	AWG	2 차측 권선에 사용된 개별 전선 가닥 게이지
등가 2 차측 2 미터법 전선 게이지		0.060	mm	등가 전선 지름(미터 단위)
2차측 2리츠 가닥	75	75		리츠선에 사용된 가닥 수. 리츠가 아닌 비집적 트랜스포머의 경우 1 로 설정
Resistivity_25 C_sec2		79.06	m-ohm/m	저항률(미터당 milli-ohm)
트랜스포머 2 차측 MLT		3.70	cm	턴당 평균 길이
DCR_25C_Sec2		5.85	m-ohm	25C 에서 위상당 예상 저항(참조용)
DCR_100C_Sec2		7.84	m-ohm	100C 에서 위상당 예상 저항(25C 보다 약 33% 높음)
DCR_Ploss_Sec1		0.14	W	DC 저항으로 인한 예상 전력 손실(두 2 차측 절반 모두)
ACR_Sec2		12.54	m-ohm	측정된 위상당 AC 저항(100kHz, 실온), 100C 권선 온도에 가깝게 하기 위해 1.33 을 곱함. ACR 의 기본값은 100C 에서 DCR 값의 두 배입니다
ACR_Ploss_Sec2		0.08	W	예상 AC 구리 손실(두 2 차측 절반 모두)
총 권선 2 구리 손실		0.22	W	두 2 차측 절반에 대한 총(AC+DC) 권선 구리 손실
커패시터 RMS 전류		1.4	Α	출력 커패시터 RMS 전류
Co2	10.00	10.0	uF	2차측 2 출력 커패시터
커패시터 리플 전압		0.8	%	2차측 1출력 커패시터의 피크-피크 리플 전압
트랜스포머 손실 계산 1 차측 구리		0.11	w	갭의 프린징 자속 손실을 포함하지 않음 95€ 에서 초 1 차츠 귀서 구리 소시
손실(1 차측 섹션에서)				85C 에서 총 1 차측 권선 구리 손실
2 차측 구리 손실		0.92	W	2 차측 권선의 총 구리 손실

		ı		_
트랜스포머 총 구리 손실		1.02	W	트랜스포머의 총 구리 손실(1 차측+2 차측)
AW_S		22.25	mm^2	2 차측 권선의 체적
2차측 필 팩터		13%	%	2차측 권선의 % 필 팩터. 일반적으로 최대치는 60%(피복된 리츠) 및 75%(피복되지 않은 리츠)입니다
신호 핀 저항 값		<u> </u>		
데드 타임		320	ns	테드 타임
버스트 모드	자동	2		버스트 모드 선택: 1,2 및 3 은 히스테리시스를 가지며 주파수 기준값이 서로 다릅니다
f_max		797	kHz	최대 내부 클럭 주파수(데드 타임 설정에 따라 다름)
f_burst_start		299	kHz	버스트 모드의 하위 기준 주파수, 히스테리시스 제공. 버스트 오프 기간 후 리스타트 시의 스위칭 주파수입니다
f_burst_stop		349	kHz	버스트 모드의 상위 기준 주파수. 버스트 오프 기간이 중지되는 스위칭 주파수입니다
DT/BF 핀 상단 분배기 저항		7.21	k-ohms	DT/BF 핀과 VREF 핀 사이의 저항
DT/BF 핀 하단 분배기 저장		65	k-ohms	DT/BF 핀과 G 핀 사이의 저항
스타트 저항	7.32	7.32	k-ohms	스타트업 저항 - 소프트 스타트 커패시터와의 직렬 저항, 스타트업 시 FB 와 VREF 사이의 저항과 동일
스타트업 지연		0.0	ms	스타트업 지연. 스위칭이 시작되기 전의 지연 시간. 지연을 늘리려면 R_START 를 줄입니다
Rfmin		31.8	k-ohms	VREF 핀과 FB 핀 사이의 저항, 최소 동작 주파수로 설정. 이 저항과 Rstart 를 더하여 f_MIN 결정
C_softstart	1	1.0	uF	소프트 스타트 커패시터. 권장값은 0.1uF 와 10uF 사이입니다
Ropto		3.8	k-ohms	옵토 이미터와의 직렬 저항
OV/UV 핀 하단 저항	20.00	20.0	k-ohm	OV/UV 핀 분배기의 하단 저항
OV/UV 핀 상단 저항	3112	2.92	M-ohm	OV/UV 핀 분배기의 총 상단 저항
LLC 용량성 분배기 전류	선생 회도			0 가시크 코르 에쉬 크카 0 사 0 미 * 디디어
느린 전류 제한		1.91	Α	8 사이클 전류 제한 - 브라운아웃 및 스타트업 동안 플러스의 하프 사이클 확인
빠른 전류 제한		3.44	Α	1 사이클 전류 제한 - 스타트업 동안 플러스의 하프 사이클 확인
LLC 센싱 커패시터		47	pF	HV 센싱 커패시터, 메인 공진 커패시터와의 전류 분배기 형성
RLLC 센싱 저항	20	18.6	Ω	LLC 전류 센싱 저항, 센싱 커패시터의 전류 감지
IS 핀 전류 제한 저항		220	Ω	센싱 R 의 전압이 -0.5V 보다 작을 때 센싱 저항에서 IS 핀 사이의 전류 제한
IS 핀 노이즈 필터 커패시터		1.0	nF	IS 핀 바이패스 커패시터. IS 핀 전류 제한 커패시터와 극점 형성
IS 핀 노이즈 필터 극점 주파수		724	kHz	이 극점은 IS 핀 신호를 감쇠시킵니다
손실 예산				
LCS 디바이스 전도성 손실		1.3	W	정격 라인 및 풀 부하의 전도성 손실
출력 다이오드 손실		1.4	W	예상 다이오드 손실
트랜스포머 예상 총 구리 손실		1.02	W	트랜스포머의 총 구리 손실(1 차측+2 차측)
트랜스포머 예상 총 코어 손실		0.9	W	예상 코어 손실
총 트랜스포머 손실		2.0	W	총 트랜스포머 손실
총 예상 손실		4.7	W	LLC 스테이지의 총 손실
예상 효율		96%	%	예상 효율
핀		104	W	LLC 입력 전력

2 차측 턴 수 및 전압 위치		2 차측 턴 수를 선택하는 데 유용 - 출력은		
		스프레드시트의 다른 부분과 연결되지 않음		
V1		12.00	V	목표 레귤레이션 출력 전압 Vo1. 슬레이브 출력에 미치는 영향을 확인하려면 변경
V1d1		0.60	V	Vo1 에 대한 다이오드 강하 전압
N1		2.00		Vo1 에 대한 총 턴 수
V1_Actaul		12.00	V	예상 출력
V2		24.00	V	목표 출력 전압 Vo2
V2d2		0.60	V	Vo2 에 대한 다이오드 강하 전압
N2		4.00		Vo2 에 대한 총 턴 수
V2_Actual		24.60	V	예상 출력 전압
별개의 직렬 인덕터(비집	적 트랜스포머에만 해	ಕ)		집적 마그네틱을 사용할 경우 적용되지 않음 - 스프레드시트의 다른 부분과 연결되지 않음
Lsep		100.00	uH	원하는 개별 인덕터의 인덕턴스
Ae_Ind		0.53	cm^2	인덕터 코어 단면적
인덕터 턴 수		13		1 차측 턴 수
BP_fnom		1501	가우스	코어 손실 계산을 위한 AC 자속(f_predicted 및 풀부하시)
예상 피크 1 차측 전류		1.9	Α	예상 피크 1 차측 전류
BP_fmin		2802	가우스	피크 자속 밀도, 최소 주파수 fmin 에서 계산
인덕터 게이지		44	AWG	1 차측 권선에 사용된 개별 전선 가닥 게이지
등가 인덕터 미터법 전선 게이지		0.050	mm	등가 전선 지름(미터 단위)
인덕터 리츠 가닥		125.00		리츠선에 사용된 가닥 수
인덕터 병렬 전선		1		리츠선을 구성하는 병렬 개별 전선 수
Resistivity_25 C_Sep_Ind		75.4	m-ohm/m	저항률(미터당 milli-ohm)
인덕터 MLT		7.00	cm	턴당 평균 길이
인덕터 DCR 25C		68.6	m-ohm	25C 에서의 예상 저항(참조용)
인덕터 DCR 100C		92.0	m-ohm	100C 에서의 예상 저항(25C 보다 약 33% 높음)
ACR_Sep_Inductor		147.1	m-ohm	측정된 AC 저항(100kHz, 실온), 100C 권선 온도에 가깝게 하기 위해 1.33을 곱함
인덕터 구리 손실		0.07	W	85C 에서 총 1 차측 권선 구리 손실

참고: 스프레드시트에서 2 차측 턴 수의 계산은 출력 권선의 AC 적층을 가정합니다. 이 설계에서는 트랜스포머 구성에 AC 적층을 사용하지 않았습니다.

11 히트싱크 어셈블리

항목 번호	항목 설명			
1	히트싱크			
2	금속 클립			
3	너트			
4	나사			
5	HiperLCS IC			
6	해당 없음			
7	써멀 그리스			
8	평와셔			

그림 8 – 조립 전

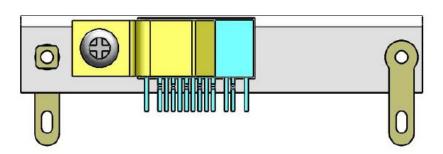


그림 9 - 조립 후

12 성능 데이터

12.1 효율성 - 100%, 50%, 20%, 10% 부하

12.1.1 효율성 데이터

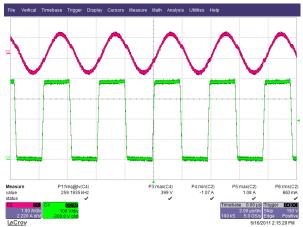
	P _{IN}	V _{OUT} (24V)	I _{OUT} (24V)	V _{OUT} (12 V)	Ι _{ουτ} (12 V)	P _{OUT}	효율성 (%)
	107.05	24.27	2.999	11.99	2.327	100.686	94.06
I	53.97	24.24	1.503	11.99	1.164	50.389	93.36
I	22.365	24.22	0.6027	11.99	0.4608	20.122	89.97
	11.985	24.22	0.3027	11.99	0.2266	10.048	83.84

12.2 출력 크로스 레귤레이션

아래 표시된 데이터를 얻기 위해 출력 하나는 풀 부하(3A)로 조정된 반면, 다른 출력은 100W 의 최대 총 출력 전력과 일치하도록 무부하에서 풀 부하까지 범위가 다양하게 설정되었습니다.

12.2.1 크로스 레귤레이션 데이터

3A°	에서 12V의 크	로스 레귤레이	l년	3 A બે	서 24 V 의 크	로스 레귤레여	l년
V _{OUT} (24V)	Ι _{ουτ} (24V)	V _{OUT} (12 V)	Ι _{ουτ} (12 V)	V _{OUT} (24V)	I _{оит} (24V)	V _{OUT} (12 V)	I _o (12 V)
25.31	0.0105	11.94	3	22.84	3	12.07	0.012
25.25	0.0206	11.94	3	23.21	3	12.05	0.02
25.21	0.0318	11.94	3	23.28	3	12.05	0.0314
25.16	0.0514	11.95	3	23.35	3	12.04	0.0507
25.08	0.1024	11.95	3	23.46	3	12.04	0.1008
24.98	0.2506	11.95	3	23.64	3	12.03	0.251
24.9	0.5014	11.96	3	23.79	3	12.02	0.4997
24.78	0.9992	11.96	3	23.96	3	12.01	1.0016
24.6	2	11.97	3	24.21	3	11.99	2.001
24.49	2.645	11.98	3	24.29	3	11.99	2.324


12.3 벌크 전압 스타트 및 셧다운

VCC 입력에 적용된 +12VDC 에 의해 출력 스타트업 전압이 357.4VDC 로 설정되었으며 283.9VDC 에서 출력 셧다운이 발생했습니다.

13 파형

13.1 하프 브리지 전압 및 전류, 정상 동작

13.1.1 380VDC 입력에서 측정

고림 10 - 1 차측 V-I, 풀 부하 위: 1 차측 전류, 1A/div 아래: HB 에서 1 차측 그라운드 전압, 100V, 2μs/div

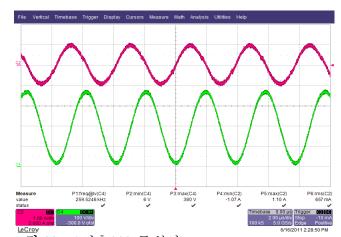


그림 11 - 1 차측 V-I, 풀 부하 위: 1 차측 전류, 1A/div 아래: 공진 커패시터(C11) 전압, 100V, 2µs/div

13.2 출력 전압 스타트업 프로파일

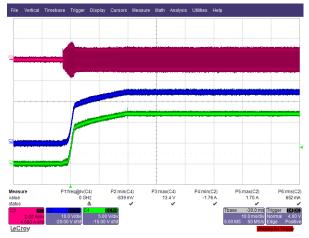


그림 12 - 풀 부하 스타트업

위: 1 차측 전류, 1A/div

중간: 24V_{OUT}, 10V/div,

아래: 12V_{OUT}, 5V, 10ms/div

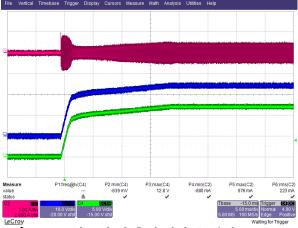


그림 14 - 스타트업 시 출력 전압, 무부하

위: 1 차측 전류, 1A/div

중간: 24V_{OUT}, 10V/div,

아래: 12V_{OUT}, 5V, 5ms/div

<u>그림</u> 13 – 풀 부하 스타트업

위: 1 차측 전류, 1A/div

아래: HB 에서 1 차측 그라운드 전압,

100V, 2μs/div

13.3 부하 과도 응답(380VDC 입력 시 5%~100% 부하 단계)

아래 그림에서는 부하 과도 응답을 더 자세히 볼 수 있도록 평균 신호가 사용되었습니다. 오실로스코프는 트리거 소스로 부하 전류 단계를 통해 트리거되었습니다. 출력 스위칭과 입력 주파수는 과도 부하 시 무작위로 발생하므로 부하 단계 응답에서 출력 리플에 미치는 영향은 제외하고 트리거 소스에서 출력 리플에 미치는 영향에 대한 평균을 구합니다.

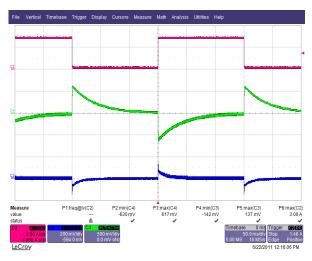


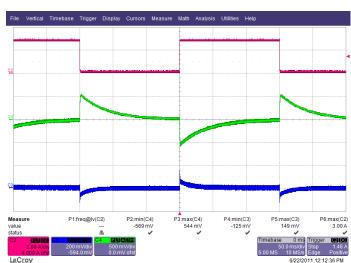
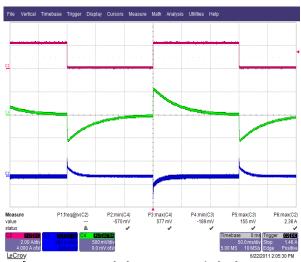
그림 **15** – 24V_{OUT} 10% 부하에서 5%-100% 부하 과도, **12V**_{OUT}.

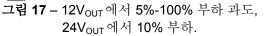
위: 24V_{OUT} 부하 전류, 2A/div

중간: 24V_{OUT} AC 커플링, 500mV/div

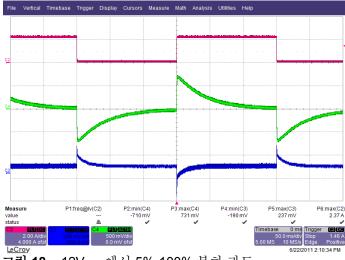
아래: 12V_{OUT} AC 커플링, 200mV/div,

50ms/div

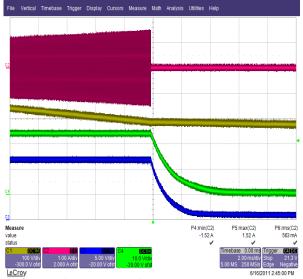

그림 **16** – 24V_{OUT} 100% 부하에서 5%-100% 부하 과도, 12V_{OUT}.

위: 24Vout 부하 전류, 2A/div


중간: 24V_{OUT} AC 커플링, 500mV/div

아래: 12V_{OUT} AC 커플링, 200mV/div, 50ms/div

위: 12 V_{OUT} 부하 전류, 2A/div 중간: 24V_{OUT} AC 커플링, 500mV/div 아래: 12V_{OUT} AC 커플링, 200mV/div, 50ms/div



고림 18 - 12V_{OUT}에서 5%-100% 부하 과도, 24V_{OUT}에서 100% 부하. 위: 12 V_{OUT} 부하 전류, 2A/div 중간: 24V_{OUT} AC 커플링, 500mV/div

아래: 12V_{OUT} AC 커플링, 200mV/div, 50ms/div

13.4 출력 브라운아웃

그림 12 및 13 은 입력 전압 서플라이를 스위치 오프하고 24V 출력의 하강 엣지에서 오실로스코프를 트리거하여 측정되었습니다.

<u>그림 19 -</u> 출력 브라운아웃.

위: 1 차측 전류, 1A/div

두 번째 선: 1 차측 버스 전압, 100V/div

세 번째 선: 24V_{OUT}, 10V/div 네 번째 선: 12V_{OUT}, 5V, 2ms/div

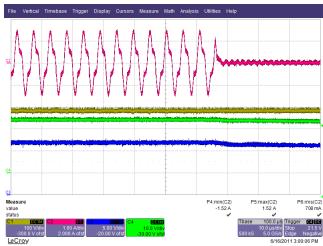
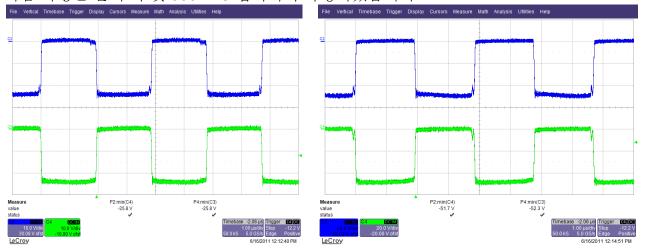


그림 20 - 출력 브라운아웃.


위: 1 차측 전류, 1A/div

두 번째 선: 1 차측 버스 전압, 100V/div

세 번째 선: 24V_{OUT}, 10V/div 네 번째 선: 12V_{OUT}, 5V, 10μs/div

13.5 출력 다이오드 피크 역 전압

다음 파형은 풀 부하 및 380VDC 입력에서 측정되었습니다.

캐소드), 380VDC 입력, 10V, 1μs/div

그림 21 - 12V 출력 다이오드(D3 듀얼 패키지 커먼 그림 22 - 24V 출력 다이오드(D2 듀얼 패키지 커먼 캐소드), 380VDC 입력, 20V, 1μs/div

13.6 단락 회로

아래 표시된 테스트의 경우 100W 부하, 380VDC 입력에서 서플라이 출력이 수은 변위 릴레이로 단락되었습니다. 전류 상승 시 오실로스코프가 트리거되도록 설정되었습니다.

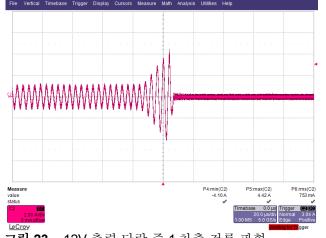


그림 23 - 12V 출력 단락 중 1 차측 전류 파형, 2A, 20μs/div

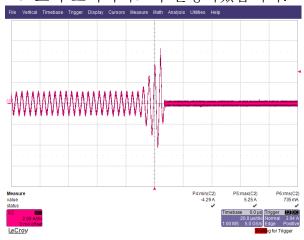


그림 24 - 24 V 출력 단락 중 1 차측 전류 파형, 2A, 20µs/div

13.7 출력 리플 측정

13.7.1 리플 측정 기술

DC 출력 리플 측정의 경우 픽업으로 인한 가짜 신호를 줄이기 위해 개조된 오실로스코프 테스트 프로브를 활용해야 합니다. 프로브 개조에 대한 자세한 내용은 아래 그림에 나와 있습니다.

4987BA 프로브 어댑터는 프로브 끝에 병렬로 연결된 두 커패시터에 연결됩니다. 커패시터는 0.1μF/50V 세라믹 유형 1 개와 1.0μF/50V 알루미늄 전해 유형 1 개 입니다. 알루미늄 전해 유형 커패시터는 극성이 있으므로 DC 출력 간에 적절한 극성을 유지해야 합니다(아래 참조).

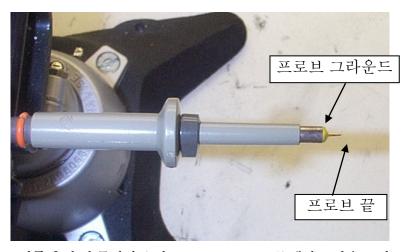


그림 25 - 리플 측정 시 준비된 오실로스코프 프로브 (끝 캡과 그라운드 리드 제거)

그림 26 - 프로브 마스터의 오실로스코프 프로브(www.probemaster.com) 4987A BNC 어댑터 (리플 측정을 위해 전선으로 개조, 두 개의 병렬 디커플링 커패시터 추가)

13.7.2 출력 리플 측정 결과

그림 **27** – 12V_{RIPPLE}, 380VDC, 풀 부하. 50mV, 2µs/div

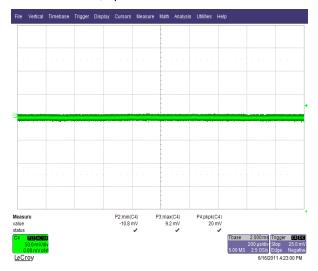
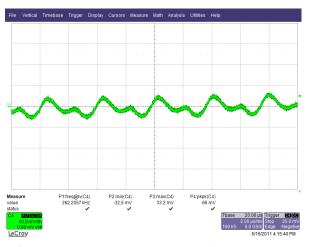


그림 **29** – 12V_{RIPPLE}, 380VDC, 무부하 50mV, 200μs/div (파워 서플라이가 버스트 모드에 있지 않음.)



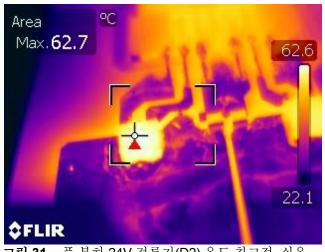

그림 **28** – 24V_{RIPPLE}, 380VDC, 풀 부하. 50mV, 2μs/div

그림 30 – 24 V_{RIPPLE}, 380VDC, 무부하 50mV/div, 200μs/div (파워 서플라이가 버스트 모드에 있지 않음.)

14 써멀 측정

14.1 조건: 380VDC, 풀 부하, 1 시간 동안 가동

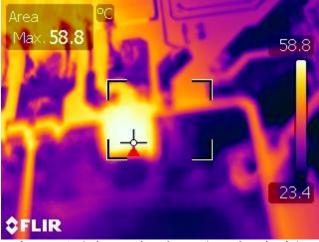


그림 31 - 풀 부하 24V 정류기(D2) 온도 최고점, 실온. 그림 32 - 풀 부하 12V 정류기(D3) 온도 최고점, 실온.

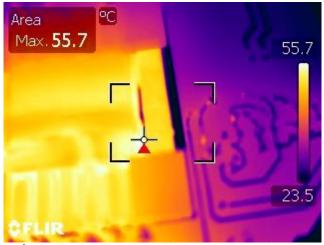


그림 33 - 풀 부하 트랜스포머(T1) 온도 최고점, 실온.

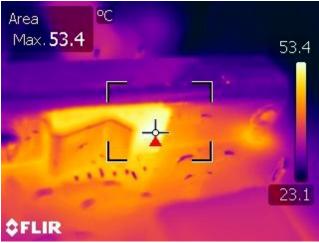


그림 34 - 풀 부하 HiperLCS(U1) 온도 최고점, 실온.

그림 **35 -** 보드 Top 면.

그림 **36 -** 보드 Bottom 면.

15 개정 내역

일자	작성자	개정	설명 및 변경 내용	검토 대상
2011-09-13	SS	1.2	최초 출시	애플리케이션 및 마케팅

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © Copyright 2011 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail:

usasales@powerint.com

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: chinasales@powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales@powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: eurosales@powerint.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@powerint.com

ITALY

Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@powerint.com

e-mail: japansales@powerint.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX
World Wide +1-408-414-9760

